1	The area of an ellipse is the same as the area of a square with sides of length 8. If the length of the minor axis is always two-thirds of the length of the major axis, then					
	find the focal length of the	ne elli	pse. Round the answer to	the	nearest hundredth.	
A)	8.22	B)	8.23	C)	8.24	
D)	8.25	E)	NOTA			
2	The eccentricity of a conic section is $\frac{3}{5}$. The distance between the focal points is					
	24. Find the length of th	e min	or axis of this conic section	on.		
A)	32	B)	40	C)	42	
D)	48	E)	NOTA			
3	Find the area of an ellipse with the following equation: $9x^2 + 36y^2 - 54x - 360y = -657$					
A)	9π	B)	18π	C)	36π	
D)	324 <i>π</i> 3	E)	NOTA	,		
4	What is the center, C, and the radius, r, of the circle $(x-4)^2 + (y+3)^2 = 7$					
A)	C(-4,3), r=7	B)	C(4,-3), r=7	C)	$C(-4,3), r = \sqrt{7}$	
D)	$C(4,-3), r=\sqrt{7}$	E)	NOTA			
5	What is the area of the region enclosed by $4x^2 + y^2 = 36$?					
A)	9π	B)	18π	C)	36π	
D)	39π	E)	NOTA			
6	What are the coordinates	of th	e focus of the parabola y	$^{2}-6$	y - 4x + 13 = 0	
A)	(0,2)	B)	(2,0)	C)	(3,2)	
D)	(2,3)	E)	NOTA	,		
7	If $x = \frac{y+6}{x-1}$, for $x \neq 1$ then what is the vertex of the graph?					
A)	(0,-6)	B)	(-6,0)	C)	(3,2)	
D)	(2,3)	E)	NOTA	,		
8	The graph of $4x^2 - 16x - y^2 - 6y - 9 = 0$ is $a(n)$					
A)	Parabola	B)	Hyperbola	C)	Ellipse	
D)	Circle	E)	NOTA			
9	For what value of k will the graph of the equation $2x^2 + xy - 6y^2 + 7x - 7y = k$ form two intersection lines?					
A)	-3	B)	0	C)	3	
D)	6	E)	NOTA	,		

10	B(x) is the graph of all co-planar points for which the sum of the distances to the				of the distances to the	
	points (1,3) and (1,5) is 6	5. Th	e graph of $B(x)$ is $a(n)$			
A)	Line	B)	Ellipse	C)	Parabola	
D)	Hyperbola	E)	NOTA			
11	The locus of points in a plane equidistant from (-1, -4) and (5, 3) can be expressed by an equation of fitting the form $Ax + By = C$, where A, B and C are relatively prime integers and $A \ge 0$. What is $A + B + C$?					
A)	24	B)	29	C)	31	
D)	43	E)	NOTA			
12 A)	Which of the following r I. $y = x^2 + 1$ II. $y = \frac{1}{x}$ III. $y = 3x^2 + x - 2y^2 + y$ Lonly	The presence of the presence	ent a conic section?	C)	Land III only	
д) D)	L II and III	E)	NOTA	C)	I and III only	
13 A) D)	What is the exact area bo 13 25π	ounde B) E)	d by $x^2 - 6x + y^2 + 12y = 25$ NOTA	-20 C)	13π	
14	What is the conic represe $0 = 6x^2 - 4xy + 8y^2 + 3x$	ented $+4v$	by the following equation	n?		
A)	Circle	B)	Ellipse	C)	Hyperbola	
D)	Parabola	E)	NOTA	- /	JI	
15	A parabola with equation	n y =	$0.25x^2 + 3x + 2$ contains	poin	ts A and B. Wehre do	
• >	the lines tanget to A and $(6,7)$	B int	ersect the directrix if AB	is th	e latus rectum?	
A) D)	(-0, -7) (5.4)	B) F)	(-0, -8) NOTA	C)	(-4, -0), (-8, -0)	
<i>U</i>)	(5, 7)	L)	1101/1			
16	For the conic $4x^2 + 9y^2$ -	-16x	-20 = 0, find the sum of	the x	-coordinates of the foci	
A)	and the vertices on the m	ajor a B)	1X15. 6	\mathbf{C}	4 . 5	
		\mathbf{E}		0)	$4 \pm \sqrt{2}$	
$\boldsymbol{\nu}$	$8+\sqrt{5}$	L)	NUIA			

- 17 An arch in the form of a semi-ellipse is 48 ft. wide at the base and has a height of 20 ft. How wide (exactly) is the arch at a height of 10 feet above the base?
- A) $6\sqrt{3}$ B) $12\sqrt{3}$ C) $18\sqrt{3}$
- D) $24\sqrt{3}$ E) NOTA

18 What is the area of the circle with equation $x^2 + y^2 - 4y - 96 = 0$?

- A)
 9216π
 B)
 100π
 C)
 96π
- D) 10π E) NOTA

¹⁹ The graph of the quadratic equation with equation $y = 2x^2 + 8x + C$ passes through the x-axis at the point (-1, 0). The graph also passes through the x-axis at the point (*k*, 0). Find the value of *k*.

C) -3

C) Circle

- A) 4
 B) 1

 D) -5
 E) NOTA
- D) -5 E) NOTA
- 20 The maximum of $f(x) = -x^2 + 2x + q$ has a maximum value of 6 at x = 1. What if the value of f(x)?
- A) 6 B) 5 C) -3 D) -2 E) NOTA
- 21 Determine the equation for the locus of points equidistant from the point (4,3) and the line y = -1 and lying in the same plane.
- A) $y = \frac{1}{8}(x-4)^2 + 1$ B) $x = \frac{1}{8}(y-3)^2 + 4$ C) $y = 8(x-4)^2 + 1$ E) NOTA E) NOTA
- 22 Which of the following is <u>not</u> a conic section?
- A) Hyperbola B) Point
- D) 2 intersecting lines E) NOTA
- 23 If the circle which passes through the points (1,1), (10,-2) and (2,-6) is written in standard form, find the sum of the coefficients for each x term with a nonzero exponent.
- A) -10 B) -9 C) -8
- D) -4 E) NOTA

24 Determine the area of the largest circle that can be inscribed within the area of the intersections of the following two circles: Circle 1: $x^2 + y^2 + 6x - 8y + 16 = 0$ Circle 2: $x^2 + y^2 - 4x - 8y + 4 = 0$ A) B) π C) $\frac{3\pi}{2}$ π 4 E) NOTA D) 4π 25 Determine the eccentricity of the ellipse defined by the following equation: $9x^2 + 4y^2 - 54x - 16y - 47 = 0$ C) $\frac{3}{2}$ A) $\frac{\sqrt{5}}{3}\\\frac{9}{2}$ B) √13 3 E) NOTA D) Each asymptote of the hyperbola $\frac{(x-3)^2}{9} - \frac{(y-2)^2}{4} = 1$ intersects the line 26 3y + 7x = 8 once. What is the sum of the abscissas of these two intersection point? $\frac{4}{3}$ $\frac{4}{45}$ $\frac{4}{5}$ A) B) C) NOTA D) E) 68 15 27 Of the shortest distance from the latus rectum to the directrix of a parabola is 6, what is the length of the latus rectum? C) 12 A) B) 3 6 D) Cannot be determined E) NOTA What is area plus the circumference of the graph of $x^2 + y^2 + 28x - 34y + 469 = 0$? 28 16π C) 32π A) 8π B) D) 24π E) NOTA

29 To graph a hyperbola, first you create a "rectangle" whose midpoints of sides are the vertices and co-vertices of the hyperbola. You then draw the lines which contains the diagonals of the "rectangle, and trace in the hyperbola. What is the area of the "rectangle" used in graphing

8
$$x^2 - 9y^2 + 32x + 54y - 121 = 0$$
?
A) $6\sqrt{2}$ B) 34 C) $24\sqrt{2}$

D) 72 E) NOTA

³⁰ The focus of $y^2 - 17x - 6y - 25 = 0$ has coordinates (a,b). Find $\frac{\ln|ab|}{b^2}$ to the nearest hundredth. A) -0.06 B) 0.21 C) 0.67 D) 1.04 E) NOTA

- A parabola is defined in the Cartesian plane by a focus of (9,2) and a directrix with equation 9x + 6y = 80. Determine the length of the latus rectum for the described conic section.
- A) $\frac{\sqrt{13}}{2}$ D) $\frac{2\sqrt{13}}{3}$ B) $\frac{3\sqrt{13}}{2}$ E) NOTA C) $\frac{\sqrt{13}}{3}$
- 32 A cartographer is placed in charge of mapping as much land as he can. He digs a well 10 miles away from his office. Each day he can ride his horse a total of 40 miles. How many square miles can he cover on horseback if he is to take a break for water half way through each excursion?
- A) $50\pi\sqrt{3}$ B) $50\pi\sqrt{2}$ C) $\frac{50\pi}{3}\sqrt{3}$ E) NOTA C) $\frac{50\pi}{3}\sqrt{3}$
- Which of the following conics is incorrectly match with its possible degenerate?A) Circle-point B) Ellipse-line C) Parabola 2 lines
- A) Circle-pointB) Ellipse-lineD) Hyperbola- 2E) NOTA
 - intersection lines

- 34 Give the eccentricity of $2x^2 y^2 + 8x + 6y 11 = 0$ A) $\sqrt{3}$ B) $\frac{\sqrt{6}}{2}$ C) $\sqrt{15}$ D) $\frac{\sqrt{2}}{2}$ E) NOTA
- 35 Which of the following represent equations of the asymptotes of the hyperbola given by $4x^2 3y^2 + 8x + 16 = 0$
 - A) $y = \pm \frac{2}{\sqrt{3}}(x-1)$ B) $y = \pm 3x-1$ C) $y = \pm \frac{2}{\sqrt{3}}x$ D) $y = \pm 4x$ E) NOTA
- 36 Halley's comet has an elliptical orbit with an eccentricity of $e \approx 0.97$. The length of the major axis of the orbit is approximately 36.18 astronomical units. To the nearest million miles how close does Halley's comet come to the sun if the mean distance between earth and the sun is approximately 93 million miles?
- A) 50 million B) 45 million C) 44 million
- D) 47 million E) NOTA

³⁷ Which of the following is an equation of the parabola whose vertex is at $\left(\frac{5}{2}, -\frac{3}{4}\right)$

and whose graph passes through the point (-2, 4)?
A)
$$y = \left(x + \frac{5}{2}\right)^2 - \frac{3}{4}$$
 B) $y = \frac{3}{4}\left(x - \frac{5}{2}\right)^2$ C) $y = 19\left(x - \frac{5}{2}\right)^2 - \frac{3}{4}$
D) $y = \left(x - \frac{5}{2}\right)^2 - \frac{3}{4}$ E) NOTA

- ³⁸ What is the eccentricity of $8x^2 16xy + 8y^2 + 5x 2y = 2718281828$ A) 0 B) 1 C) 2
- D) E E) NOTA

Answers

1.	С
2.	Α
3.	В
4.	D
5.	В
6.	D
7.	E (1/2,-25/4)
8.	В
9.	Α
10.	12
11.	D
12.	С
13.	D
14.	В
15.	В
16.	E 8
17.	D
18.	В
19.	С
20.	В
21.	А
22.	Е
23.	В
24.	В
25.	А
26.	В
27.	С
28.	D
29.	С
30.	В
31.	D
32.	А
33.	В
34.	А
35.	$E y = \pm \frac{2}{\sqrt{3}} (x+1)$
36.	А
37.	E $y = \frac{19}{18} \left(x - \frac{5}{2} \right)^2 - \frac{3}{4}$
38.	В

Solutions				
1	$A = ab\pi, a = \frac{3}{2}b, a^2 = b^2 + c^2$			
	$64 = b\left(\frac{3}{2}b\right)\pi, 64 = a\left(\frac{2}{3}a\right)\pi, c^2 = \frac{96}{\pi} - \frac{128}{3\pi} = \frac{160}{3\pi}$			
	$b^{2} = \frac{128}{3\pi}, a^{2} = \frac{96}{\pi}, c = \frac{4\sqrt{30\pi}}{3\pi} \to 2c = \frac{8\sqrt{30\pi}}{3\pi} \approx 8.24$			
2	$e = \frac{3}{5} = \frac{12}{a}, a = 20, 20^2 = b^2 + 12^2, b^2 = 256, b = 16 \rightarrow 2b = 32$			
9	Show that the product of two linear terms in 0. $(2x-3y)(x+2y)$; Then try to match			
	up linear terms			
	$2x^{2} + xy - 6y^{2} + 7x - 7y - k = (2x - 3y + 1)(x + 2y + 3) \rightarrow -k = 3 \rightarrow k = -3$			