1) Find r if
$$\frac{r}{6} + \frac{r}{3} + \frac{r}{2} = 1$$
.

- A)
- B) 1/2
- C) 2
- D) 12/11
- E) NOTA
- Find the sum of the reciprocals of the solutions of $6x^2 5x + 1 = 0$.
- A)
- B) 5/6
- C) 5
- D) -1/5
- E) NOTA

3) Solve for
$$r$$
:
$$\frac{6r+2}{3-r}=4$$
.

- A) -1
- B) 1
- C) 3
- D) 10/7
- NOTA

4) Solve for x:
$$\frac{3}{3+\frac{3}{3+r}} = 3$$
.

- A) -1
- B) 1
- C) 9/2
- D) -9/2
- E) NOTA

5) Find the smallest integer *n* such that
$$\frac{1}{2n+3} < -\frac{1}{7}$$
.

- A)
- B)
- C) -6 D) -7
- E) NOTA
- Let p/q be a ratio of positive integers such that no p and q have no common divisors besides 1 and $\frac{p}{q} = \sqrt{3}$. Squaring both sides gives us $\frac{p^2}{q^2} = 3$, so that $p^2 = 3q^2$. Therefore, p is divisible by 3. Hence we can write $p = 3p_1$, so our equation is now $9p_1^2 = 3q^2$, or $3p_1^2 = q^2$. Hence, q is also divisible by 3, which contradicts our assumption that p and q have no common divisors besides one. This argument proves
- that $\sqrt{3}$ is rational
- B) that $\sqrt{3}$ is irrational . C) that 3 is prime

- D)
- What real values of z form a complete solution set to $3|z-2|+3 \ge 2-|z|$?
- $0 \le z \le 2$
- C) $z \ge 2$ D) all real values of z E) NOTA

0)	Solve loi	i cai .	x^2	22												
A) C) E)	$-1/3 \le x$ $-3 \le x$ NOTA	B) $x \le -1/3 \text{ or } x \ge 1/3$ D) $x \le -3 \text{ or } x \ge 3$														
9)	Find k su	ch tha	at k +	2 <i>k</i> -	+ 3k	+ 4 <i>k</i>	+	+ 20	k=2	2730						
A)	11	B)	12		C)	13		D)	14		E)	NO	TA			
10)	For how i	nany	real v	alues	of w	does	3* -	- 2 "	= 53	?						
A)	0	B)	1		C)	2		D)	infin	itely	many		E)	NO	TA	
11)	Find all y	such	that 3	3 – 2	y - 2	2 ≥ 2	2 – y									
A)	$y \le 1, 2$	≤ <i>y</i>	≤5	B)	2≤	<i>y</i> ≤	5	C)	1≤	y ≤ :	5	D)	<i>y</i> ≤	<u> </u>	E)	NOTA
	Find the su						2	3								
A)	-6	B)	-3		C)	0		D)	3		E)	NO	ГА			
13)	How many	diffe	erent ir	ntege	rs m s	satisfy	y 5+ 5-	2m	≥1?							
A)	3	B)	4		C)	5		D)	6		E)	NO	ГΑ	,		
14)	Find the sn $a^2 = 2c^2$			tive e	ven i	ntege	r a su	ch tha	at for	some	integ	ers b	and o	we o	can wr	rite
A)	No such a	exist	is	B)	2		C)	4		D)	12		E)	NO.	ГΑ	
	Find all va											.23				
A)	5/3, -1/21		B)	7/3,	-7/5	C)	5/3,	-1	D)	5/3,	7/5	E)	NO	ΓA		

E) NOTA

16) Find the sum of the third powers of the four fourth roots of 4.

A) $8\sqrt{2}$ B) $-8\sqrt{2}$ C) 0 D) 4

17) Find x + y if

$$3x + \frac{2}{y} = 9$$
$$-2x + \frac{7}{y} = 19$$

- A) 4
- B) 4/3
- C) 2/3
- D) 2
- NOTA

18) How many pairs of positive integers (m,n) satisfy 4m + 3n = 129?

- A) 7
- B) 8
- C) 9
- D) 10
- E) NOTA

19) What is the smallest possible value of $3x^4-2x^2+7$ for real values of x?

- A) 7
- B) 6
- C) 20/3
- D) 62/9
- E) NOTA

20) If a and b are positive integers such that $\frac{1}{a} + \frac{1}{b} = \frac{1}{7}$, then what is the largest possible value of min(a,b), where min(a,b) is defined as the smaller of a and b?

- A) 6
- C) 13
- D) 14
- NOTA

21) It takes 8 people 5 days to build 3 huts. How many days will it take to build one hut if one person works on the first day and one person joins at the beginning of each day thereafter?

- A) 4 2/3
- B) 5
- C) 4 13/15
- D) 4 4/5
- NOTA

22) When factored into as many polynomials as possible of degree one or greater with real coefficients, how many factors does x^5+1 have?

- A) 2
- C) 4
- D) 5
- E) NOTA

23) Solve for y: $\frac{4}{4+\frac{4}{y}} = \frac{3}{3-\frac{3}{y}}$.

- D) no solution
- NOTA

24) Find the sum of all the solutions of $x^3 - 1 = 0$ which have nonzero imaginary parts.

- A) 0
- B)
- C) -1 D) $\sqrt{3}$
- E) NOTA

25) Given that $a^2 + b = 6$, and a and b are both positive, what is the largest possible value of a^4b^2 ?

A)	81	B)	64	C)	100	D)	75	E)	NO	ГА			
26)	Find the su	ım of	the positiv	e valı	ues of x wh	ich sa	tisfy	6x4	+19	$x^3 - 259x^2 + 489x - 135 = 0$			
A)	10/3	B)	17/6	C)	35/6	D)	3		E)	NOTA			
27)	27) We define the length of interval (a,b) to be $b-a$. Find the sum of the lengths of all intervals which together form a non-overlapping, complete solution set to $\frac{1}{y-2}-2>\frac{1}{y}$.												
A)	2	B)	3/2	C)	$2\sqrt{2}-2$	2	D)	$\sqrt{5}$		E) NOTA			
28)	Find x + y	+ z if											
				y√.	$\overline{y} = 108$ $\overline{z} = 80\sqrt{3}$ $\overline{x} = 225\sqrt{3}$								
A)	118	B)	124	C)	126	D)	132		E)	NOTA			
29) Given that $a_1^2 + a_2^2 + a_3^2 = 7$, find the maximum possible value of $3a_1 + 2a_2 + a_3$.													
A)	$7+2\sqrt{2}$		B) 7√2	2	C)	$2\sqrt{2}$	21		D)	$9\sqrt{3}$ E) NOTA			
30)	30) Find the positive difference between the largest and smallest real values of x which satisfy $x^4 + x^3 - 28x^2 + x + 1 = 0$.												
A)	$\sqrt{21} + \sqrt{21}$	2 +	9	B)	$\frac{\sqrt{21}}{2} + 2$	√2 -	- 2		C)	$\sqrt{21} + 2\sqrt{2} - 2$			
D)	$\frac{\sqrt{21}}{2} + 2$	2√2 -	$+\frac{11}{2}$	E)	NOTA								