| Sections 3.1-3.4

1.

Exercises

Mark true or false and explain:

(a)

(b)
(©)

The name of a class in Java must be the same as the name of its source
file (excluding the extension . java).
The names of classes are case-sensitive.

The import statement tells the compiler which other classes use this
class. v

Mark true or false and explain:

(a)
(b)
(©)

(@

The FootTest program consists of three classes. v
A Java program can have as many classes as necessary.
A Java program is allowed to create only one object of each class. -

Every class has a method calied main. v

70

CHAPTER 3 ~ OBJECTS AND CLASSES

S

Navigate your browser to Sun’s Java API (Application Programming
Interface) documentation web site (for example,
http://java.sun.com/j2se/1.5.0/docs/api/index.html)or, if
you have the JDK documentation installed on your computer, open the file
<JDK base folder>\docs\api\index.html (for example,
C:\Program Files\Java\jdkl.5.0 O6\docs\api\index.html).

(a) Approximately how many different packages are listed in the API
spec?

(b) Find JFrame in the list of classes in the left column and click on it.
Scroll down the main window to the “Method Summary” section.
Approximately how many methods does the JFrame class have,
including methods inherited from other classes? 3? 127 25?7 300? v

Explain the difference between public and private methods.
Mark true or false and explain:

(a) Fields of a class are usually declared private.

(b) An object has to be created before it can be used. v

(¢} A class may have more than one constructor.

(d) The programmer names objects in his program.

(e) When an object is created, the program always calls its init method.
e

Modify the FootTest program
(IM\ChO3\FirstSteps\FootTest.java) to show

(a) four feet facing north, spaced horizontally 100 pixels from each other
(b) four feet facing north, spaced vertically 100 pixels from each other
(¢) four feet aligned along the sides of a square, as follows:

—

P

A,

Each side should be 100 pixels.

CHAPTER 3 ~ EXERCISES 71

’ Sections 3.5-3.7

7.- (a) Using the FootTest class as a prototype, create a class WalkerTest,
Your program should display the same walker in four positions,
spaced horizontally by one full “step,” facing east:

o

——

re .-—-—-!

LA

¢ Hint: the distance of one full step is covered by calls to

firstStep, nextStep, and stop. :

(b) Change walkerTest from Part (a) to show

—— — ————
—— —— —

8" (a) Change WalkerTest from Question 7 into PacerTest. This
program should display four pairs of feet, as in Part (a), but facing west
rather than east.

(b) Addthe turnLeft and turnkRight methods to the Pacer class
(IM\ChO3\FirstSteps\Pacer.java) & Hint: for a right turn, turn

each foot 90 degrees to the right, then move the left foot by
PIXELS_PER_INCH * 8 appropriately sideways and forward. 2

(¢) Change the PacerTest class from Part (a) and use the modified
Pacer class from Part (b} to show four pairs of feet, as follows:

=
1

9" Add a third Walker, named cat, to the WalkingGroup class in
JM\ChO3\FirstSteps. Position cat in the middle between amy and ben.
cat should “walk” in sync with the other two. Change cat’s foot pictures to
the ones from the leftpaw.gif and rightpaw.gif image files (in
JM\ChO3\Exercises). Run First Steps to test cat.

72

CHAPTER 3 ~ OBJECTS AND CLASSES

10."

11.*

12."

(@) Using the class walker as a prototype, create a new class Hopper. A
Hopper should move both feet forward together by stepLength in
firststep and nextStep and not move at all in stop.

(b) Test your Hopper class by making cat in Question 9 a Hopper rather
than a Walker.

Change the PacingGroup class (in JM\Ch03\FirstSteps) to make one
Pacer walk counterclockwise along the perimeter of a square, turning 90
degrees after every few steps. Leave only amy in the PacingGroup —
exclude the other pacers . Use a Pacer object with the turnLeft and
turnRight methods, added to Pacer in Question 8 (b). ¢ Hints: initially
position amy at x = width/8,y = height*7/8; allow amy to travel in
one direction for danceFloor.getWidth () /2 pixels. 3 Repeat the
exercise with a Pacer walking clockwise.

(a) Write a subclass of Walker called Bystander, Bystander should
redefine (override) Walker’s firstStep, nextStep, and stop
methods in such a way that a Bystander alternates turning its left foot
by 45 degrees left and right on subsequent steps but never moves the
right foot. Bystander should also redefine the distanceTraveled
method, to always return 0. ¢ Hints: (1) To redefine (override) a
superclass’s method in a subclass, keep its header but change the code
inside the braces. (2) Define a new field (for example, tapsCount),
which will help determine the direction of the left foot’s turn in each
“step.” {3} Do not duplicate the methods inherited from the superclass

~

that remain the same. =

(b) Change a couple of words in the WalkingGroup class (in
JM\ChO3\FirstSteps) to test your Bystander class. ¢ Hint: turn
one of the Walkers into a Bystander. 3

CHAPTER 3 ~ EXERCISES 73

13.¢

14.¢

Using the Banner applet from Chapter 2 as a prototype (Banner . java and
TestBanner.html in JM\Ch02\HelloGui), create and test an applet that

shows a spinning foot.

¢ Hints:

Create a new class SpinningFoot adaptedMe r.

Use two fields: Image pic and Foot foot.

Lol .

In the init method, load pic from an image file, for example,
leftshoe.qgif. Setup a timer that fires every 30 ms.

4. Inthe paint method, check whether foot has been created. If not

yet —
if (foot == null)
{

}

— then set foot to a new Foot object in the middle of the content
pane.

In the actionPerformed method, turn foot by 6 degrees.

6. Adapt sSpinningFoot.html from TestBanner.html, changing
Banner.class to SpinningFoot.class in its <applet> tag.

7. Add Foot.java and CoordinateSystem.java to the project. 2
N

The class Circle (Circle.java in JM\Ch0O3\Exercises) describes a
circle with a given radius. The radius has the type double, which is a
primitive data type used for representing real numbers. The
CircleTest.java class in JM\Ch0O3\Exercises is a tiny console
application that prompts the user to enter a number for the radius, creates a
Circle object of that radius, and displays its area by calling the Circle’s
getArea method.

Create a class Cylinder with two fields: Circle base and double
height. Is it fair to say thata Cylinder HAS-A Circle? Provide a
constructor that takes two double parameters, r and h, initializes base to a
new Circle with radius r, and initializes height to h. Provide a method
getVolume that returns the volume of the cylinder (which is equal to the
base area times height). Create a simple test program CylinderTest, that
would prompt the user to enter the radius and height of a cylinder, create a
new cylinder with these dimensions, and display its volume.

74 CHAPTER 3 ~ OBJECTS AND CLASSES

15.* Create an application that shows a picture of a coin in the middle of a
window and “flips” the coin every two seconds. Your application should
consist of two classes: Cecin and CoinTest.

The coin class should have one constructor that takes two parameters of the
type Image: the heads and tails pictures of the coin. The constructor saves
these images in the coin’s ficlds. The Coin class should have two methods:

// Flips this coin
public void £lip()
{

}

and

// Draws the appropriate side of the coin
// centered at (x, y)

public void draw(Graphics g, int x, ¥y)

{

1

The CoinTest class’s constructor should create a Timer and a Coin. It
also should have a paint method that paints the coin and an
actionPerformed method that flips the coin and repaints the window.

¢ Hints:

1. ‘Use bits and pieces of code from the Wwalker class and from

. Banner.java and HelloGraphics. java in JM\Ch02\HelloGui,
nd ideas from Question 16 in Chapter 2.

2. The class Graphics has a method that draws an image at a given
location. Call it like this:

g.drawlmage (pic, x, y, null};
This method places the upper-left corner of pic at {x, y). Explore the
documentation for the library class Image or look at the
CoordinateSysten class to find methods that return the width and
height of an image.

3. Find copyright-free image files for the two sides of a coin on the
Internet.

AL P

