The abbreviation NOTA denotes
None of These Answers.

1. How many zeros are at the end of the expansion of 126 ! ?
A. 25
B. 30
C. 31
D. 32
E. NOTA
2. Let $x=\sqrt{132+\sqrt{132+\sqrt{132+\sqrt{\ldots}}}}$ and let $y=\sqrt{132-\sqrt{132-\sqrt{132-\sqrt{\ldots}}}}$ then which is the value of $x+y$.
A. 0
B. 23
C. 24
D. 26
E. NOTA
3. Evaluate $\operatorname{Sin}\left(\operatorname{Cos}^{-1} \frac{1}{9}\right)$.
A. $\frac{8}{9}$
B. $\frac{9}{4 \sqrt{5}}$
C. $\frac{4 \sqrt{5}}{9}$
D. $4 \sqrt{5}$
E. NOTA
4. What is the amplitude times the period of the graph of $y=13 \sin x \cos x$?
A. 26π
B. 13π
C. $\frac{13}{2} \pi$
D. $\frac{\sqrt{13}}{2} \pi$
E. NOTA
5. Simplify $\frac{\cot \theta}{\cos \theta-2 \sin ^{2} \theta \cos \theta}$ completely for $0<\theta<\frac{\pi}{4}$?
A. $\frac{1}{\sin (3 \theta)}$
B. $\frac{1}{\sin \theta \cos (2 \theta)}$
C. $\frac{1}{\cos \theta \sin \theta}$
D. $\frac{\sin \theta}{\cos ^{2} \theta \cos (2 \theta)}$
E. NOTA
6. How many distinct triangles $A B C$ can be made with $m \angle A=30^{\circ}, B C=2, A C=3$?
A. 2
B. 1
C. 0
D. infinitely many
E. NOTA
7. What is the amplitude of the graph of $y=-2 \sin (x)+7 \cos (x)$?
A. 9
B. 11
C. $2 \sqrt{7}$
D. $\sqrt{53}$
E. NOTA
8. What value of k will make the vectors $\langle 2,-7, k\rangle$ and $\langle 3,2,6\rangle$ orthogonal?
A. -2
B. $-\frac{4}{3}$
C. $\frac{4}{3}$
D. $\frac{7}{6}$
E. NOTA
9. In triangle $M H S$, with $M H=3, M S=4$ and $\mathrm{HS}=2$, determine the area of MHS .
A. 12
B. $\frac{3 \sqrt{15}}{4}$
C. $\frac{3 \sqrt{15}}{2}$
D. $\frac{5 \sqrt{5}}{4}$
E. NOTA
10. If the base-ten number 60 is written in base two, what is the sum of the digits?
A. 4
B. 5
C. 6
D. 7
E. NOTA
11. If circle W has a radius of 6 times the radius of circle M, and the circles are externally tangent to each other, then how many revolutions will M make if W makes one revolution?
A. 6
B. 5
C. 4
D 3
E. NOTA

12. Evaluate i^{2006} for $i=\sqrt{-1}$.
A. i
B. 1
C. $-i$
D. -1
E. NOTA
13. If $\frac{|3 i+4|}{1-i}=a+b i$ then $a+b=$
A. 5
B. 5.5
C. 7
D. 7.5
E. NOTA
14. Find the sum of the rational roots of the equation $x^{3}-x^{2}-3 x-1=0$.
A. 2
B. 1
C. -1
D. -2
E. NOTA
15. The graph of the polar equation $r=\frac{3}{3-4 \cos \theta}$ is a
A. ellipse
B. hyperbola
C. lemniscate
D. limaçon
E. NOTA
16. If x and y are real numbers then what is the domain of $y=\sqrt{3-x^{2}}$?
A. $|x| \leq \sqrt{3}$
B. $|x|<\sqrt{3}$
C. $|x| \geq \sqrt{3}$
D. all reals
E. NOTA
17. Find the sum of the positive integral factors of 10 .
A. 7
B. 8
C. 10
D. 18
E. NOTA
18. Evaluate $\left(\log _{2} 9\right) \cdot\left(\log _{3} \sqrt{8}\right)$.
A. 1
B. 1.5
C. 2
D. 6
E. NOTA

NO CALCULATOR!
19. If $J+U=4$ and $J^{2}+U^{2}=20$ then give the value of $2 \cdot J \cdot U$.
A. 16
B. 12
C. -4
D. $2 i$
E. NOTA
20. Express $\sqrt{396}$ in simplest radical form, $a \sqrt{b}$ and then give $a+b$.
A. 11
B. 17
C. 19
D. 20
E. NOTA
21. $4\left(\cos 60^{\circ}\right)^{-\frac{3}{2}}=$
A. $8 \sqrt{2}$
B. $\sqrt[3]{3}$
C. $\frac{\sqrt{2}}{2}$
D. $4 \sqrt{2}$
E. NOTA
22. Jorge walked 12 miles uphill in 30 minutes, and then 12 miles downhill at a rate of 4 miles per hour. What was Jorge's average speed in miles per hour for the entire trip?
A. 5 mph
B. 14 mph
C. $6 \frac{6}{7} \mathrm{mph}$
D. $4 \frac{4}{5} \mathrm{mph}$
E. NOTA
23. Will walked 8 miles, downhill, at 4 miles per hour, then completed the 24-mile-total downhill trip by falling, laying still for 10 minutes, then rolling the rest of the trip. If his average rate for the downhill journey (walking, lying and rolling) was 6 miles per hour, find the rate in miles per hour that Will rolled.
A. $13 \frac{5}{6}$
B. $8 \frac{8}{11}$
C. $2 \frac{1}{3}$
D. $2 \frac{1}{6}$
E. NOTA
24. Let A be the smallest prime greater than 49 , and B be the greatest prime less than 100, and C be the smallest whole number, then give the value of $A+B+C$.
A. 149
B. 150
C. 151
D. 152
E. NOTA
25. The graph of $y=\frac{x^{2}+1}{x-1}$ approaches the line $y=m x+b$ as x approaches positive infinity. What is the value of $3 m+b$?
A. 0
B. 4
C. 5
D. 6
E. NOTA
26. The graphs of $r=4 \cos \theta$ and $r=2$ meet at the points R and S. Give the length of the minor arc $\widehat{R S}$ on the graph of $r=4 \cos \theta$.
A. $\frac{4 \pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{8}$
E. NOTA
27. The three third-roots of (8i) are $a i$, $b+c i$ and $b-c i$. Give the value of $a^{2}+c^{2}$.
A. 6
B. 5
C. 4
D. 3
E. NOTA
28. A regular octagon with side length 20 is inscribed in a circle. Let $x=\sin 22.5^{\circ}, \quad y=\cos 22.5^{\circ}$ and $z=\tan 22.5^{\circ}$. Which is an expression for the area outside of the octagon and inside of the circle?
A. $\frac{50 \pi x^{2}-800}{y}$
B. $\frac{100 \pi-800 x y}{x^{2}}$
C. $\frac{100 \pi x-400 y}{z}$
D. $100 \pi x^{2}-800 z$
E. NOTA
29. Which is an expression for $\cos (\operatorname{Arccos}(x)-\operatorname{Arcsin}(x))$ for $0<x<1$?
A. $\frac{1}{x^{2}-x^{4}}$
B. $x^{2}-x^{4}$
C. $2 x \sqrt{1-x^{2}}$
D. $\frac{\sqrt{1-x^{2}}}{2 x}$
E. NOTA
30. If $\sqrt{2 x+1}-\sqrt{x-3}=4$ for real value of x, then what is the value of $\sqrt{100-x}$?
A. 16
B. 8
C. 6
D. 4
E. NOTA

Solutions:

1. Divide by 5 , by 25 and by 125 . Add the results and you get 31 . $\underline{\boldsymbol{C}}$.
2. Short cut: $132=12(11)$ so the expression with the "addition" is the larger and the "subtraction is the smaller. $x=12$ and $y=11$. Sum 23. B.
3. Draw a right triangle in quadrant I and the $x=1$, the hypotenuse is 9 so $y=\sqrt{80}$.
The \sin is then $\frac{4 \sqrt{5}}{9}$ which is $\underline{\boldsymbol{C}}$.
4. The expression is equal to $\frac{13}{2} \sin (2 x)$ by the double-angle sine property. So the amp $=6.5$ and the period is 2π divided by the coefficient 2 , to give the answer is $\frac{13}{2} \cdot \pi=\underline{\boldsymbol{C}}$.
5. $\frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\cos \theta(\cos 2 \theta)}$ by factoring out a cosine from the bottom right and using the cosine double-angle rule. simplify to choice B.
6. $A C$ times $\sin A$ gives 1.5 , and since 2 (side opposite A) is more than 1.5 and less than 3 , there are two solutions. \boldsymbol{A}.
7. $\sqrt{2^{2}+7^{2}}=\underline{\mathbf{D}}$.
8. The dot product must be 0 : $6-14+6 k=0$ so $k=4 / 3$. Answer $\underline{\text { C. }}$
9. Using Heron's formula: $s=9 / 2$

$$
\begin{aligned}
& \sqrt{\frac{9}{2}\left(\frac{9}{2}-\frac{6}{2}\right)\left(\frac{9}{2}-\frac{8}{2}\right)\left(\frac{9}{2}-\frac{4}{2}\right)}=\sqrt{\frac{9(3)(5)}{16}} \\
& =\frac{3 \sqrt{15}}{4}=\underline{B} .
\end{aligned}
$$

10. In base 2, we get 111100 for a digit sum of 4 . Choice \boldsymbol{A}.
11. The circumferences will be in the same ratio as the radii. Answer A.
12. $i^{2006}=i^{2}=-1$. Choice \underline{D}.
13. The numerator is 5 , so $\frac{5}{1-i}=\frac{5(1+i)}{2}$ and $a+b=5 / 2+5 / 2=5$. Choice \underline{A}.
14. -1 is a root. Divide by this and you get that the other two roots are irrational. So the sum of the rational roots is -1 . \underline{C}.
15. Change to rectangular form, or use the rule of coefficients. If you do the former, you get $3 r-4 r \cos \theta=3$ and $3 \sqrt{x^{2}+y^{2}}-4 x=3$ then $3 \sqrt{x^{2}+y^{2}}=3+4 x$ which we square to get $9\left(x^{2}+y^{2}\right)=14 x^{2}+24 x+9$ which is a hyperbola. Choice \underline{B}.
16. $|x| \leq \sqrt{3}$ since $3-x^{2} \geq 0$. Choice \boldsymbol{A}.
17. $1+2+5+10=\underline{D}$.
18. $\frac{2 \log 3}{\log 2} \cdot \frac{\frac{1}{2} \cdot 3 \cdot \log 2}{\log 3}=3$. Choice $\underline{\underline{E}}$.
19. Square the first equation to get $J^{2}+2 J U+U^{2}=16$. Substitute the $2^{\text {nd }}$ equation and subtract to get $2 \mathrm{JU}=-4$. Choice \mathbf{C}.
20. $6 \sqrt{11}$ gives $6+11$ is 17 . Choice \underline{B}.
21. $4\left(\cos 60^{\circ}\right)^{-\frac{3}{2}}=4\left(\frac{1}{2}\right)^{-\frac{3}{2}}=4(2)^{\frac{3}{2}}=4 \sqrt{8}$
which is $8 \sqrt{2}$ or choice \boldsymbol{A}.
22. total distance $/$ total time $=24 /(.5+3)$ $=24 / 3.5=240 / 35=48 / 7=\underline{C}$.
23. distance/time $=24 /(2+1 / 6+x)=6$ solves to time rolling is $11 / 6$. So rate is 16 miles rollling divided by time $11 / 6$ gives answer \underline{B}.
24. $53+97+0=150$. $\underline{\text { B }}$.
25. Divide to get $y=x+1+\frac{2}{x-1}$ and the slant asymptote is $\mathrm{y}=\mathrm{x}+1$ for $3 \mathrm{~m}+\mathrm{b}=4$. ㅂ.
26. Set the equations equal and we get $\cos \theta=\frac{1}{2}$ and they meet when $\theta=\frac{\pi}{3}$ and $\theta=-\frac{\pi}{3}$ for an angle of $\frac{2 \pi}{3}$. Both graphs are circles with a radius of 2 , so $\frac{2 \pi}{3}$ is $1 / 3$ of the circumference which gives $\frac{4 \pi}{3}$. Choice \boldsymbol{A}.
27. Using DeMoivre's theorem, to get 2cis 30,2 cis150 and 2cis270 in degrees, which gives $-2 \mathrm{i}, \pm \sqrt{3}+i$ and $a^{2}+c^{2}=5$ which is choice \mathbf{B}.
28.

Area is $1 / 2$ times
apothem times perimeter or 1/2 times 10/tan22.5 times 160. This gives
area of the
octagon is $800 / \mathrm{z}$. The circle's radius is $10 / \sin 22.5$ which is $10 / x$. So the area of the requested portion is $100 \pi / x^{2}$ $800 / \mathrm{z}$. But if we change the last part to $800 y / x$ and get a common denominator, we get choice \underline{B}.
29. $\cos (\operatorname{Arccos}(x)-\operatorname{Arcsin}(x))$
$=\cos (\operatorname{Arccos} x) \cos (\operatorname{Arcsin} x)+$
$\sin (\operatorname{Arccos} x) \sin (\operatorname{Arcsin} x)$

$=x\left(\sqrt{1-x^{2}}\right)+\sqrt{1-x^{2}}(x)=2 x \sqrt{1-x^{2}}=\boldsymbol{C}$.
30. Square to get $\sqrt{2 x+1}=4+\sqrt{x-3}$

$$
\begin{aligned}
& 2 x+1=16+x-3+8 \sqrt{x-3} \text { or } \\
& x-12=8 \sqrt{x-3} \\
& x^{2}-24 x+144=64(x-3) \text { or } \\
& x^{2}-88 x+336=0 \\
& (x-4)(x-84)=0 \text { (factor } 336 \text { to }
\end{aligned}
$$

$$
3,4,4,7 \text { and to get a large } 88 \text { we }
$$ use $3(4)(7)$ and 4 . The answer $x=4$ does not give a true equality, so we discard it. The answer $x=84$ works, and so the square root of $100-x$ is 4 . Answer D.

