For all questions, answer choice (E) NOTA stands for "None of These Answers"

1. $\int_{0}^{\frac{3}{2}} \frac{d x}{\sqrt{9-4 x^{2}}}$
(A) $\pi / 2$
(B) $\pi / 4$
(C) $1 / 2$
(D) 1
(E) NOTA
2. The inverse of $\mathrm{f}(\mathrm{x})=\frac{x}{\sqrt{x^{2}+7}}$ can be written in the form
$\mathrm{f}^{-1}(\mathrm{x})=\frac{x \sqrt{A}}{\sqrt{B-x^{2}}}$ with $-1<\mathrm{x}<1$ and A and B integers.
Find the value of $\mathrm{A}+\mathrm{B}$.
(A) 10
(B) 9
(C) 8
(D) 7
(E) NOTA
3. $\lim _{x \rightarrow-\infty} \frac{68 x-19}{\sqrt{6 x^{2}+9}}=$?
(A) $34 \sqrt{3}$
(B) $-19 / 9$
(C) $-34 \sqrt{6}$
(D) $68 \sqrt{6}$
(E) NOTA
4. Determine the equation of the line normal to the curve $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ at the point $(3,1)$.
(A) $9 x+13 y=40$
(B) $2 x-y=5$
(C) $x+2 y=5$
(D) $3 x+2 y=11$
(E) NOTA
5. If $y=\log _{8} \cos ^{4} x$, then $\frac{d y}{d x}=$?
(A) $\left(-4 \cos ^{3} x\right)(\sin x)(\ln 8)\left(8^{\cos ^{4} x}\right)$
(B) $\frac{1}{(\ln 4096)\left(\cos ^{3} x\right)}$
(C) $(-4 \sin x)\left(4 \log _{8} \cos ^{3} x\right)$
(D) $\frac{-4 \tan x}{3 \ln 2}$
(E) NOTA
6. Find the maximum area of a rectangle with perimeter M units.
(A) $M^{2} / 16$
(B) $M^{2} / 18$
(C) $M^{2} / 12$
(D) $M^{2} / 8$
(E) NOTA
7. $\lim _{x \rightarrow 0} \frac{16 \sin 8 x \cos 8 x}{x}=$?
(A) 8
(B) 16
(C) 24
(D) 32
(E) NOTA
8. $\int_{\pi}^{\frac{27 \pi}{2}}|\sin \theta| d \theta=$?
(A) 25
(B) 23
(C) 11.5
(D) 13
(E) NOTA

For all questions, answer choice (E) NOTA stands for "None of These Answers"
13. A conical tank (with vertex down)
9. If $f(x)=\left|x^{2}-4\right|, g(x)=|x| \cos x$ and $h(x)=f(x) g(x)$, then $h^{\prime}(1)=$?
(A) $3 \sin 1-\cos 1$
(B) $-3 \sin 1+5 \cos 1$
(C) $-3 \sin 1+\cos 1$
(D) $-5 \sin 1-\cos 1$
(E) NOTA
10. Find the area of the region between the graphs $f(x)=4\left(x^{3}-x\right)$ and $\mathrm{g}(\mathrm{x})=0$.
(A) -2
(B) 0
(C) 2
(D) 4
(E) NOTA
11. The displacement from equilibrium of an object in motion at time t is given by $\mathrm{y}=\frac{1}{4} \cos (12 \mathrm{t})-\frac{1}{3} \sin (12 \mathrm{t})$.
Determine the velocity of the object when $\mathrm{t}=\frac{\pi}{8}$.
(A) 3
(B) -7
(C) 1
(D) -1
(E) NOTA
12. If $y=e^{\frac{\sin (2 x)}{x}}$, then $\mathrm{y}^{\prime}(1)=$?
(A) $\left(2 e^{\sin 2}\right)(\cos 2-\sin 2)$
(B) $\left(e^{\sin 2}\right)(\cos 2-2 \sin 2)$
(C) $\left(e^{\sin 2}\right)(\cos 2+2 \sin 2)$
(D) $\left(e^{\sin 2}\right)(2 \cos 2-\sin 2)$
(E) NOTA has a diameter 14 feet across the top and 10 feet deep. If oil is flowing into the tank at a rate of 8 cubic feet per minute, find the rate of change of the depth of water (in $\mathrm{ft} / \mathrm{min}$) when the water is 6 feet deep.
(A) $\frac{5}{24 \pi}$
(B) $\frac{200}{441 \pi}$
(C) $\frac{49}{100 \pi}$
(D) $\frac{1}{2 \pi}$
(E) NOTA
14. Find the sum of the x and y-coordinates of the point on the graph of the function $\mathrm{f}(\mathrm{x})=\sqrt{x-8}$ closest to the point $(2,0)$.
(A) 8
(B) 1.5
(C) 2
(D) 10
(E) NOTA
15. Use the trapezoidal rule for approximating integrals with $\mathrm{n}=4$ to approximate $\int_{0}^{\pi}\left(\cos ^{2} x\right) d x$.
(A) $\frac{3 \pi}{8}$
(B) 1
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$
(E) NOTA

For all questions, answer choice (E) NOTA stands for "None of These Answers"
16. $\lim _{x \rightarrow 1} \frac{6 \arctan x-\frac{3 \pi}{2}}{x-1}=$?
(A) 3
(B) 2
(C) 1.5
(D) 1
(E) NOTA
17. Evaluate: $\lim _{x \rightarrow \infty}\left(1+\frac{1}{3 x}\right)^{2 x}$
(A) $\frac{2}{\mathrm{e}^{3}}$
(B) $\frac{\mathrm{e}^{2}}{3}$
(C) $\sqrt[3]{\mathrm{e}^{2}}$
(D) $\sqrt{\mathrm{e}^{3}}$
(E) NOTA
18. The half-life of a substance is 398 years. If 28 grams of the substance are present in a sample initially, how much will be present after 1393 years?
(A) $\frac{7}{2}$
(B) $\frac{7 \sqrt{2}}{2}$
(C) $\frac{14 \sqrt{2}}{2}$
(D) $\frac{7 \sqrt{2}}{4}$
(E) NOTA
19. If $\mathrm{f}(\mathrm{x})=\frac{(x-2)^{2}}{\sqrt{x^{2}+1}}$ with $\mathrm{x} \neq 2$, then $\mathrm{f}^{\prime}(0)=$?
(A) -4
(B) -2
(C) $-\sqrt{2}$
(D) Undefined
(E) NOTA
20. What is the minimum value of the second derivative of $y=x^{4}+6 x^{3}+4 x+1$?
(A) $-3 / 2$
(B) -58
(C) -27
(D) -3
(E) NOTA
21. Which of the following is false about the graph of $f(x)=2 x^{5 / 3}-5 x^{4 / 3}$?
(A) Increasing and concave downward on $-\infty<x<0$
(B) Decreasing and concave upward on $1<x<8$
(C) Decreasing and concave downward on $0<x<1$
(D) Increasing and concave downward on $8<x<\infty$
(E) NOTA
22. $\sum_{n=1}^{16} n^{2}=$?
(A) 1512
(B) 1496
(C) 1484
(D) 1458
(E) NOTA

For all questions, answer choice (E) NOTA stands for "None of These Answers"
23. Find the average value of the
function $f(x)=x^{2}+6 x+10$ over the interval [-3, -1$]$.
(A) $7 / 3$
(B) 3
(C) $9 / 2$
(D) 2
(E) NOTA
24. Calculate two iterations (find x_{3}) of Newton's Method using $\mathrm{x}_{1}=1$ as the initial guess to approximate a zero of $f(x)=3 x^{2}-1$.
(A) $7 / 12$
(B) $3 / 5$
(C) $5 / 9$
(D) $4 / 7$
(E) NOTA
25. If $f(\theta)=\frac{\sin \theta}{1-\cos \theta}$, then $f^{\prime}(\theta)=$?
(A) $\tan \theta$
(B) $\frac{1}{1-\cos \theta}$
(C) $\frac{\cos \theta}{\cos \theta-1}$
(D) $\frac{-\sin \theta}{1-\cos \theta}$
(E) NOTA
26. According to "Charlie's Law," if the temperature of a particular gas remains constant, the pressure is inversely proportional to the square of the volume. Which of the following statements is true?
(A) The rate of change of the pressure is inversely proportional to the square of the volume.
(B) The rate of change of the pressure is directly proportional to the volume.
(C) The rate of change of the pressure is inversely proportional to the cube of the volume.
(D) The rate of change of the pressure is directly proportional to the square of the volume.
(E) NOTA
27. $\int_{0}^{\frac{\pi}{6}} 6 \sqrt{1+\tan ^{2} x} d x=$?
(A) $3 \ln (3)$
(B) 4
(C) $2 \ln (1 / 3)$
(D) $(1 / 2) \ln (2)$
(E) NOTA
28. A population of parrots in the wild can be modeled by the function

For all questions, answer choice (E) NOTA stands for "None of These Answers" $\mathrm{P}(\mathrm{t})=\frac{100 \mathrm{t}^{2}}{\mathrm{t}^{2}+1}$ if $\mathrm{t} \geq 0$, where t is measured in years and P is measured in hundreds of parrots. How many years from the present time is the parrot population growing fastest?
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{\sqrt{3}}{3}$

Who needs one of those things to do math?
(D) 1
(E) NOTA
29. If $\mathrm{y}=2 \mathrm{x}^{3}-15 \mathrm{x}^{2}-144 \mathrm{x}$, then

$$
\frac{d y}{d\left(x^{2}-16 x\right)}=?
$$

(A) $6 x+12$
(B) $6 x^{2}-30 x-144$
(C) $3 x+9$
(D) $x^{2}-\frac{15}{2} x-72$
(E) NOTA
30. If $\frac{A}{x+6}+\frac{B}{x-5}=\frac{x-27}{x^{2}+x-30}$, then $\mathrm{B}=$?
(A) 3
(B) -2
(C) -3
(D) 9
(E) NOTA

2008 Lee County Invitational

Use differentials to approximate each radical. Use the function $f(x)=\sqrt{x}$ and the given values for x and dx . Write your answers as simplified improper fractions.
(A) Approximate $\sqrt{25.5}$ using $x=25$ and $d x=0.5$
(B) Approximate $\sqrt{49.6}$ using $x=49$ and $d x=0.6$
(C) Approximate $\sqrt{81.75}$ using $x=81$ and $d x=0.75$
(D) Approximate $\sqrt{99.4}$ using $\mathrm{x}=100$ and $\mathrm{dx}=-0.6$

Find the exact value of each limit. If the limit does not exist (or approaches positive or negative infinity) write $D N E$.
(A) $\lim _{x \rightarrow 0} \frac{x^{4}+5 x-3}{2-\sqrt{x^{2}+4}}$
(B) $\lim _{x \rightarrow 1} \frac{x^{1 / 3}-1}{x^{0.25}-x}$
(C) $\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x^{3}+8}$
(D) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{\sin x-\cos x}$

Find each sum.
(A) $\sum_{i=1}^{18}\left(i^{2}+4\right)$
(B) $\sum_{i=4}^{15}(2 i-3)$
(C) $\sum_{i=1}^{14}\left(i^{3}+i\right)$
(D) $\sum_{i=1}^{10}(i-1)^{2}$

2008 Lee County Invitational

Calculus Team: Question \#4
Find the average value of each function on the given interval.
(A) $f(x)=x-2 \sqrt{x}$ on the interval $[0,4]$
(B) $f(x)=x^{2}-4$ on the interval $[0,5]$
(C) $f(x)=\frac{2}{x}$ on the interval $[1,8] \quad$ [Answer must be in terms of $\left.\ln (2)\right]$
(D) $f(x)=\cos x-\sin x$ on the interval $\left[0, \frac{\pi}{6}\right]$

$$
h(x)=f(x) g(x) \text { and } p(x)=\frac{f(x)}{g(x)}
$$

Use the table below to find the exact values of the derivatives at the given points. Write your answers in simplified fraction form.

	$x=1$	$x=2$
$f(x)$	4	6
$g(x)$	$1 / 3$	$1 / 2$
$f^{\prime}(x)$	$1 / 4$	4
$g^{\prime}(x)$	-8	12
$f^{\prime \prime}(x)$	$-3 / 2$	-1
$g^{\prime \prime}(x)$	10	-2

(A) $h^{\prime}(2)=$?
(B) $p^{\prime}(1)=$?
(C) $p^{\prime}(2)=$?
(D) $h^{\prime \prime}(1)=$?

2008 Lee County Invitational

Calculus Team: Question \#6

For each part, find the value(s) of c guaranteed by the indicated theorem. If the stated theorem does not apply, write "does not apply".
(A) Find all values of " c " that satisfy Rolle's Theorem for $f(x)=x^{4}-2 x^{2}$ on the interval $[-2,2]$.
(B) Find all values of " c " that satisfy Rolle's Theorem for $f(x)=x-x^{\frac{1}{3}}$ on the interval $[-1,1]$.
(C) Find all values of "c" that satisfy the Mean Value Theorem for derivatives for $f(x)=x^{2}$ on the interval $[-4,1]$.
(D) Find all values of "c" that satisfy the Mean Value Theorem for derivatives for $f(x)=x\left(x^{2}-3 x-4\right)$ on the interval $[-1,1]$.

Given the function $f(x)=x^{4}-4 x^{3}$,
(A) On what interval(s) is $f(x)$ increasing?
(B) On what interval(s) is $f(x)$ decreasing?
(C) On what interval(s) is $f(x)$ concave upward?
(D) On what interval(s) is $f(x)$ concave downward?

2008 Lee County Invitational

Find the exact value of each definite integral.
(A) $\int_{0}^{2}|x-2| d x$
(B) $\int_{0}^{4}|2 x-3| d x$
(C) $\int_{0}^{5}|8-2 x| d x$
(D) $\int_{2}^{6}|4-x| d x$

2008 Lee County Invitational

For each of the following, find two positive numbers A and B that satisfy the given requirements. All radicals must be in simplest form and answers for each part should be given in the form (A, B).
(A) The product is 192 and the sum is a minimum.
(B) The product is 192 and the sum of the first and three times the second is a minimum, where A is the first number and B is the second number.
(C) The product is 108 and the sum is a minimum.
(D) The product is 108 and the sum of the first and three times the second is a minimum, where A is the first number and B is the second number.

2008 Lee County Invitational

Calculus Team: Question \#10

Given the curve: $3 x y^{2}+2 x^{2} y+4 y=x y$,
(A) Find the slope of the tangent to the curve at the point $(0,0)$.
(B) Find the slope of the tangent to the curve at the point $(1,-5 / 3)$
(C) Find the slope of the normal to the curve at the point $(1,-5 / 3)$
(D) Find the slope of the tangent to the curve at the point $(-1,7 / 3)$

For each part, find the exact value.
(A) If $f(x)=12 \sec x$, then $\mathrm{f}^{\prime}\left(\frac{7 \pi}{6}\right)=$?
(B) If $f(x)=-3 \csc x$, then $\mathrm{f}^{\prime}\left(\frac{14 \pi}{3}\right)=$?
(C) If $f(x)=4 \sin x$, then $\mathrm{f}^{\prime}\left(\frac{5 \pi}{12}\right)=$?
(D) If $f(x)=20 \cos x$, then $\mathrm{f}^{\prime}\left(\frac{\pi}{12}\right)=$?

2008 Lee County Invitational

For each part, find the exact value of the definite integral.
(A) $\int_{1}^{5} 3^{x} d x=$?
(B) $\int_{1 / 2}^{5 / 2} \frac{x}{\sqrt{2 x-1}} d x=$?
(C) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\left(\cos x-2 \sec ^{2} x\right) d x=$?
(D) $\int_{0}^{4} 4 x e^{x} d x=$?

If $f(x)=9 x^{5}+\ln (x)-\cos x$, then
(A) $f^{\prime}(x)=$?
(B) $f^{\prime \prime}(x)=$?
(C) $f^{(3)}(x)=$?
(D) $f^{(4)}(x)=$?

Given that $\ln (2)=0.69$ and $\ln (5)=1.61$, use the properties of logarithms to approximate each of the following to two decimal places.
(A) $\ln (20)=$?
(B) $\ln \left(\frac{5}{2}\right)=$?
(C) $\ln \left(\frac{1}{40}\right)=$?
(D) $\ln (\sqrt[3]{200})=$?

For each of the following, find all points of inflection.
(A) $f(x)=x^{3}-6 x^{2}+12 x$
(B) $f(x)=2 x^{4}-8 x+3$
(C) $f(x)=6 x^{4}-9 x^{3}$
(D) $f(x)=\frac{x+1}{\sqrt{x}}$

1. $\frac{1}{2} \int_{0}^{3 / 2} \frac{2 d x}{\sqrt{9-4 x^{2}}}=\frac{1}{2} \arcsin \frac{2(3 / 2)}{3}-\frac{1}{2} \arcsin \frac{2(0)}{3}=\left(\frac{1}{2} \arcsin 1-\frac{1}{2} \arcsin 0\right)=\left(\frac{1}{2}\right)\left(\frac{\pi}{2}\right)$

$$
=\frac{\pi}{4} \Rightarrow \mathbf{B}
$$

2. $y=\frac{x}{\sqrt{x^{2}+7}}=>y^{2}=\frac{x^{2}}{x^{2}+7} \Rightarrow x^{2} y^{2}+7 y^{2}=x^{2} \Rightarrow>\frac{7 y^{2}}{1-y^{2}}=x^{2} \Rightarrow \frac{y \sqrt{7}}{\sqrt{1-y^{2}}}=x \ldots$ switch the x 's and y 's so that $f^{-1}(x)=\frac{x \sqrt{7}}{\sqrt{1-x^{2}}} \Rightarrow \mathrm{~A}=7$ and $\mathrm{B}=1 \Rightarrow \mathrm{~A}+\mathrm{B}=8$ => C
3. Multiply both top and bottom by $\frac{1}{\sqrt{x^{2}}}$ and the limit $=\frac{-68}{\sqrt{6}}=\frac{-34 \sqrt{6}}{3}=>\mathbf{E}$
4. $6\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=100\left(x y^{\prime}+y\right) \ldots$ now plug in $(3,1)$ and solve... $6(9+1)\left(6+2 y^{\prime}\right)=100\left(3 y^{\prime}+1\right)=>360+120 y^{\prime}=300 y^{\prime}+100=>180 y^{\prime}=260=>$ $y^{\prime}=26 / 18=13 / 9 \Rightarrow>$ slope of normal $=-9 / 13$ and the equation of the line through (3,1) with slope $-9 / 13$ is $9 \mathrm{x}+13 \mathrm{y}=40$ => A
5. $\frac{d y}{d x}=\frac{\left(4 \cos ^{3} x\right)(-\sin x)}{(\ln 8)\left(\cos ^{4} x\right)}=\frac{-4 \sin x}{(3 \ln 2)(\cos x)}=\frac{-4 \tan x}{3 \ln 2} \Rightarrow \mathbf{D}$
6. $2 \mathrm{x}+2 \mathrm{y}=\mathrm{M} \Rightarrow \mathrm{A}=\mathrm{xy}=x\left(\frac{M-2 x}{2}\right)=\frac{M x-2 x^{2}}{2} \Rightarrow \frac{d A}{d x}=\frac{M}{2}-2 x \ldots$ to find critical points we set equal to $0 \Rightarrow 0=\frac{M}{2}-2 x \Rightarrow \mathrm{x}=\frac{M}{4}$ and plugging into first equation above we get $\mathrm{y}=\frac{M}{4} \Rightarrow$ maximum area $=\left(\frac{M}{4}\right)\left(\frac{M}{4}\right)=\frac{M^{2}}{16} \Rightarrow \mathrm{~A}$
7. $\lim _{x \rightarrow 0} \frac{16 \sin (8 x) \cos (8 x)}{x}=\lim _{x \rightarrow 0} \frac{16 \cos (8 x)}{1} \bullet \frac{8 \sin (8 x)}{8 x}=\lim _{x \rightarrow 0} \frac{16 \cos (8 x)}{1}(8)(1)=\lim _{x \rightarrow 0}(16 \cos (8 x))(8)$ $=16(8)(\cos 0)=128 \Rightarrow E$
8. $12.5 \int_{0}^{\pi} \sin \theta d \theta=(12.5)(2)=25 \Rightarrow \mathbf{A}$
9. $\mathrm{h}^{\prime}=\mathrm{fg}^{\prime}+\mathrm{gf} \mathrm{f}^{\prime}=\left(\left|\mathrm{x}^{2}-4\right|\right)\left(-|x| \sin x+\frac{x}{|x|} \cos x\right)+(|x| \cos x)\left(\frac{2 x^{3}-8 x}{\left|x^{2}-4\right|}\right) \ldots$ note: $\frac{d(|u|)}{d x}=\frac{u^{\prime} u}{|u|} \ldots$ plugging in $\mathrm{x}=1 \Rightarrow 3(-\sin 1+\cos 1)+(\cos 1)(-2)=$ $\cos 1-3 \sin 1=>\mathbf{C}$
10. Area $=\int_{a}^{b}(f(x)-g(x)) d x$, where a and b are the x coordinates of the intersection
points of the curves, and $f(x)$ is the top curve, and $g(x)$ is the bottom curve. There are three intersection points and for $[-1,0] f(x)$ is the top curve, but from $[0,1] g(x)$ is the top curve, so to find the area you evaluate
Area $=\int_{-1}^{0}\left(4 x^{3}-4 x\right) d x+\int_{0}^{1}\left(4 x-4 x^{3}\right) d x=x^{4}-\left.2 x^{2}\right|_{-1} ^{0}+2 x^{2}-\left.x^{4}\right|_{0} ^{1}=1+1=2 . \Rightarrow \mathbf{C}$
11. $y^{\prime}=-3 \sin 12 t-4 \cos 12 t \Rightarrow$ at $t=\frac{\pi}{8}$ we get $-3 \sin \frac{3 \pi}{2}-4 \cos \frac{3 \pi}{2}=-3(-1)=3$
$=>\mathbf{A}$
12. $\mathrm{y}^{\prime}=(2 x \cos 2 x-\sin 2 x)\left(e^{\frac{\sin 2 x}{x}}\right) \Rightarrow \mathrm{y}^{\prime}(1)=(2 \cos 2-\sin 2)\left(e^{\sin 2}\right) \Rightarrow \mathbf{D}$
13. $\mathrm{V}=\frac{\pi r^{2} h}{3}$ and $\frac{7}{10}=\frac{r}{h} \Rightarrow \mathrm{r}=7 \mathrm{~h} / 10 \Rightarrow \mathrm{~V}=\frac{49 \pi h^{3}}{300} \Rightarrow \frac{d v}{d t}=\left(\frac{49 \pi}{100}\right)\left(h^{2}\right)\left(\frac{d h}{d t}\right) \Rightarrow$ $8=\left(\frac{49 \pi}{100}\right)(36)\left(\frac{d h}{d t}\right) \Rightarrow \frac{2}{9}=\left(\frac{49 \pi}{100}\right)\left(\frac{d h}{d t}\right) \Rightarrow \frac{d h}{d t}=\frac{200}{441 \pi}=>\mathbf{B}$
14. Looking for critical points where $f(x)$ is defined...on [$8, \infty$] we find none inside of the interval so, using the endpoint $x=8$ we find that the point $(8,0)$ is the closest point on the graph to $(2,0) \ldots$ or simply draw the graph $\Rightarrow>$ sum $=8=>\mathbf{A}$
15. $\frac{\pi}{8}\left(\cos ^{2} 0+2 \cos ^{2} \frac{\pi}{4}+2 \cos ^{2} \frac{\pi}{2}+2 \cos ^{2} \frac{3 \pi}{4}+\cos ^{2} \pi\right)=\frac{\pi}{8}(1+1+0+1+1)=\frac{\pi}{2} \Rightarrow \mathbf{D}$
16. L'hopital's rule $\Rightarrow \lim =\lim _{x \rightarrow 1} \frac{\frac{6}{1+x^{2}}}{1}=\frac{\frac{6}{2}}{1}=3 \Rightarrow \mathbf{A}$
17. By definition $e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$. This can be extended to show that $e^{a / b}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{b x}\right)^{a x}$. So we get $e^{2 / 3}=>C$
18. $1393 / 398=3.5 \Rightarrow 28\left(\frac{1}{2}\right)^{3.5}=28\left(\frac{1}{8}\right)\left(\frac{\sqrt{2}}{2}\right)=\frac{7 \sqrt{2}}{4} \Rightarrow$ D
19. Taking the natural \log of both sides we get $\ln y=\ln \frac{(x-2)^{2}}{\sqrt{x^{2}+1}}=>$ $\ln y=2 \ln (x-2)-\frac{1}{2} \ln \left(x^{2}+1\right) \Rightarrow \frac{y^{\prime}}{y}=\frac{2}{x-2}-\frac{x}{x^{2}+1} \Rightarrow$ $y^{\prime}=\frac{(x-2)^{2}}{\sqrt{x^{2}+1}}\left[\frac{2}{x-2}-\frac{x}{x^{2}+1}\right] \Rightarrow y^{\prime}(0)=\left(\frac{4}{1}\right)\left(\frac{2}{-2}\right)=4(-1)=-4 \Rightarrow \mathbf{A}$
20. To find the minimum value of the second derivative, we must set the $3^{\text {rd }}$ derivative equal to zero... $\mathrm{y}^{\prime}=4 x^{3}+18 x^{2}+4, \mathrm{y}^{\prime \prime}=12 x^{2}+36 x, \mathrm{y}^{\prime \prime}{ }^{\prime \prime}=24 \mathrm{x}+36$ $\Rightarrow 0=24 x+36 \Rightarrow 24 x=-36 \Rightarrow>x=-3 / 2$ (upon testing we find this to be a minimum $)=>y^{\prime}(-3 / 2)=12(9 / 4)+36(-3 / 2)=27-54=-27 \Rightarrow C$
21. $\mathrm{f}^{\prime}(\mathrm{x})=\frac{10}{3} x^{1 / 3}\left(x^{1 / 3}-2\right)$ and $\mathrm{f}^{\prime} \prime(\mathrm{x})=\frac{20\left(x^{1 / 3}-1\right)}{9 x^{2 / 3}}$. The function has two critical numbers at $\mathrm{x}=0$ and $\mathrm{x}=8$ and two possible points of inflection at $\mathrm{x}=0$ and $x=1$. The domain is all real numbers. $f^{\prime}(x)$ is positive and $f^{\prime \prime}(x)$ is negative on $-\infty<x<0$, so (A) is true. Continuing the analysis in the same way, we find (B) and (C) to be true. Since f ' (x) is positive on $8<x<\infty$, the graph is concave upward on that interval and (D) is false $=>\mathbf{D}$
22. Sum of squares from 1 to n is given by $\frac{n(n+1)(2 n+1)}{6} \ldots$ plugging in $\mathrm{n}=16$ gives $\frac{16(17)(33)}{6}=(8)(17)(11)=(88)(17)=1496 \Rightarrow$ B
23. $\frac{1}{-1-(-3)} \int_{-3}^{-1}\left(x^{2}+6 x+10\right) d x=\frac{1}{2}\left[\frac{x^{3}}{3}+3 x^{2}+10 x\right]$ evaluated from -3 to $-1=$ $\frac{1}{2}\left[\left(\frac{-1}{3}+3-10\right)-(-9+27-30)\right]=\frac{1}{2}\left(\frac{-22}{3}+12\right)=\frac{1}{2}\left(\frac{14}{3}\right)=\frac{7}{3} \Rightarrow$ A
24. $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ and $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x} . x_{2}=1-\frac{2}{6}=\frac{2}{3} \Rightarrow$ $x_{3}=\frac{2}{3}-\frac{1 / 3}{4}=\frac{2}{3}-\frac{1}{12}=\frac{7}{12} \Rightarrow \mathbf{A}$
25. $\frac{(1-\cos \theta)(\cos \theta)-(\sin \theta)(\sin \theta)}{(1-\cos \theta)^{2}}=\frac{\cos \theta-\cos ^{2} \theta-\sin ^{2} \theta}{(1-\cos \theta)^{2}}=\frac{\cos \theta-1}{(1-\cos \theta)^{2}}=\frac{-1}{1-\cos \theta}$ \Rightarrow E
26. $P=\frac{T k}{V^{2}} \Rightarrow P^{\prime}=\frac{-2 T k}{V^{3}} \Rightarrow \mathbf{C}$
27. $=6 \int_{0}^{\frac{\pi}{6}} \sec x d x$ (note: we can eliminate the absolute value when removing from the radical because it's positive from 0 to $\pi / 6)=6 \ln |\sec x+\tan x|$ evaluated from 0 to $\pi / 6=6\left(\ln \left|\frac{2 \sqrt{3}}{3}+\frac{\sqrt{3}}{3}\right|-\ln |1|\right)=6 \ln \sqrt{3}=3 \ln 3 \Rightarrow A$
28. The parrot population is growing fastest when the $1^{\text {st }}$ derivative is at a maximum. So $P^{\prime}(t)=\frac{200 t\left(t^{2}+1\right)-100 t^{2}(2 t)}{\left(t^{2}+1\right)^{2}}=\frac{200 t}{\left(t^{2}+1\right)^{2}}$, then
$P^{\prime \prime}(t)=\frac{200\left(t^{2}+1\right)^{2}-200 t\left[2\left(t^{2}+1\right)(2 t)\right]}{\left(t^{2}+1\right)^{4}}=\frac{200\left(t^{2}+1\right)\left[\left(t^{2}+1\right)-2(2 t)(t)\right]}{\left(t^{2}+1\right)^{4}}=\frac{200\left(-3 t^{2}+1\right)}{\left(t^{2}+1\right)^{3}}$
. $\mathrm{P}^{\prime \prime}(\mathrm{t})$ has a critical value when the numerator is 0 (the denominator cannot be 0 since setting it equal to 0 gives imaginary roots). So the
critical values we get by setting the numerator equal to 0 are $t= \pm \sqrt{\frac{1}{3}}$. By
the domain restrictions, the only possible t is $\mathrm{t}=\sqrt{\frac{1}{3}}=\frac{\sqrt{3}}{3}$. Testing this
value shows that this is in fact the value that maximizes $\mathrm{P}^{\prime \prime} .=\mathbf{C}$
29. $\frac{d y}{d\left(x^{2}-16 x\right)}=\frac{d y / d x}{d\left(x^{2}-16 x\right) / d x}=\frac{6 x^{2}-30 x-144}{2 x-16}=$
$\frac{3 x^{2}-15 x-72}{x-8}=\frac{(x-8)(3 x+9)}{x-8}=3 x+9 \Rightarrow \mathbf{C}$
30. $A(x-5)+B(x+6)=x-27$. Plugging in $\mathrm{x}=5$ to eliminate A , we get $11 \mathrm{~B}=-22$ $\Rightarrow B=-2$ => B
31. B
32. C
33. E
34. A
35. D
36. A
37. E
38. A
39. C
10.C
11.A
12.D
13.B
14.A
15.D
16.A
17.C
18.D
19.A
20.C
21.D
22.B
23.A
24.A
25.E
26.C
27.A
28.C
29.C
30.B
40. $\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}=\sqrt{x}+\frac{1}{2 \sqrt{x}} \mathrm{dx}$
(A) $5+\left(\frac{1}{10}\right)\left(\frac{1}{2}\right)=\frac{101}{20}$
(B) $7+\left(\frac{1}{14}\right)\left(\frac{3}{5}\right)=\frac{493}{70}$
(C) $9+\left(\frac{1}{18}\right)\left(\frac{3}{4}\right)=9+\frac{1}{24}=\frac{217}{24}$
(D) $10+\left(\frac{1}{20}\right)\left(\frac{-3}{5}\right)=10-\frac{3}{100}=\frac{997}{100}$
41. (A) $-3 / 0=>$ Indeterminate \Rightarrow DNE
(B) L'hopital's Rule $\Rightarrow \frac{\frac{1}{3} x^{-2 / 3}}{\frac{1}{4} x^{-3 / 4}-1}=\frac{1 / 3}{-3 / 4}=\frac{-4}{9}$
(C) L'hopital's Rule (or factoring) $\Rightarrow>\frac{\frac{-1}{x^{2}}}{3 x^{2}}=\frac{-1 / 4}{12}=\frac{-1}{48}$
(D) L'hopital's Rule $=>\frac{-\sec ^{2} x}{\cos x+\sin x}=\frac{-2}{\sqrt{2}}=\boxed{-\sqrt{2}}$
42. (A) $\frac{n(n+1)(2 n+1)}{6}+(18)(4)=\frac{3(19)(37)}{6}+(18)(4)=2109+72=2181$
(B) $\frac{12}{2}(5+27)=(6)(32)=192$
(C) $[(15)(7)]^{2}+(15)(7)=105^{2}+105=11130$
(D) $i^{2}-2 i+1=\frac{(10)(11)(21)}{6}-(2)(5)(11)+10=(35)(11)-110+10=285$
43. (A) $\frac{1}{4} \int_{0}^{4}(x-2 \sqrt{x}) d x=\frac{1}{4}\left(8-\frac{32}{3}\right)=\left(\frac{1}{4}\right)\left(\frac{-8}{3}\right)=\frac{-2}{3}$
(B) $\frac{1}{5} \int_{0}^{5}\left(x^{2}-4\right) d x=\frac{1}{5}\left(\frac{125}{3}-20\right)=\left(\frac{25}{3}-4\right)=\frac{13}{3}$
(C) $\frac{1}{7} \int_{1}^{8} \frac{2}{x} d x=\frac{2}{7}(\ln 8-\ln 1)=\frac{2}{7} \ln 8=\frac{6}{7} \ln 2$
(D) $\frac{1}{\frac{\pi}{6}-0} \int_{0}^{\frac{\pi}{6}}(\cos x-\sin x) d x=\frac{6}{\pi}\left[\frac{1}{2}+\frac{\sqrt{3}}{2}-1\right]=\frac{3(\sqrt{3}-1)}{\pi}$
44. $h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x), h^{\prime \prime}(x)=f^{\prime}(x) g^{\prime}(x)+g(x) f^{\prime \prime}(x)+f(x) g^{\prime \prime}(x)+g^{\prime}(x) f^{\prime}(x)$, $\mathrm{p}^{\prime}(\mathrm{x})=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
$(A) f^{\prime}(2) g(2)+f(2) g^{\prime}(2)=(4)(1 / 2)+(6)(12)=74$
(B) $\frac{g(1) f^{\prime}(1)-f(1) g^{\prime}(1)}{[g(1)]^{2}}=\frac{(1 / 3)(1 / 4)-(4)(-8)}{(1 / 3)^{2}}=\frac{\frac{1}{12}+32}{1 / 9}=\frac{(385)(9)}{12}=\frac{1155}{4}$
(C) $\frac{g(2) f^{\prime}(2)-f(2) g^{\prime}(2)}{[g(2)]^{2}}=\frac{(1 / 2)(4)-(6)(12)}{1 / 4}=(-70)(4)=-280$
(D) $\mathrm{f}^{\prime}(1) \mathrm{g}^{\prime}(1)+\mathrm{g}(1) \mathrm{f}$ " $(1)+\mathrm{f}(1) \mathrm{g}^{\prime \prime}(1)+\mathrm{g}^{\prime}(1) \mathrm{f}^{\prime}(1)=2(1 / 4)(-8)+(1 / 3)(-3 / 2)+(4)(10)$

$$
=-4-1 / 2+40=36-1 / 2=\frac{71}{2}
$$

6. (A) $4 \mathrm{x}^{3}-4 x=0 \Rightarrow 4 x\left(x^{2}-1\right)=0 \Rightarrow \mathrm{x}=\mathrm{c}=-1,0,1$
(B) $\mathrm{f}^{\prime}(\mathrm{x})=1-\frac{1}{3} x^{-2 / 3}=>$ not differentiable at $\mathrm{x}=0 \Rightarrow$ Does Not Apply
(C) $\mathrm{f}^{\prime}(\mathrm{c})=2 \mathrm{c}=\frac{1-16}{1-(-4)}=\frac{-15}{5}=-3 \Rightarrow \mathrm{c}=\frac{-3}{2}$
(D) $\mathrm{f}^{\prime}(\mathrm{c})=3 c^{2}-6 c-4=\frac{-6-0}{2}=-3 \Rightarrow 3 c^{2}-6 c-1=0 \Rightarrow \mathrm{c}=\frac{3+2 \sqrt{3}}{3}$ and $\frac{3-2 \sqrt{3}}{3}$
by quadratic formula...but only $\frac{3-2 \sqrt{3}}{3}$ is in the interval $[-1,1]$
7. $\mathrm{f}^{\prime}(\mathrm{x})=4 x^{3}-12 x^{2}=4 x^{2}(x-3)$ and $\mathrm{f}^{\prime \prime}(\mathrm{x})=12 x^{2}-24 x=12 x(x-2)$
critical points at $\mathrm{x}=0$ and $\mathrm{x}=3$ and possible points of inflection at $\mathrm{x}=0$ and $\mathrm{x}=2$
(A) f^{\prime} ' is positive on $(3, \infty)$ so increasing on $(3, \infty)$
(B) f^{\prime} is negative on $(-\infty, 3)$ so decreasing on $(-\infty, 3)$
(C) f^{\prime} ' is positive on $(-\infty, 0)$ and $(2, \infty)$ so concave up on $(-\infty, 0) \cup(2, \infty)$
(D) f ' $'$ is negative on $(0,2)$ so concave down on $(0,2)$
8. $(\mathrm{A})=\int_{0}^{2}(2-x) d x=4-4 / 2=2$
(B) $=\int_{0}^{3 / 2}(3-2 x) d x+\int_{3 / 2}^{4}(2 x-3) d x=9 / 2-9 / 4+16-12-(9 / 4-9 / 2)=9+4-9 / 2=\frac{17}{2}$
(C) $=\int_{0}^{4}(8-2 x) d x+\int_{4}^{5}(2 x-8) d x=32-16+25-40-(16-32)=17$
(D) $=\int_{2}^{4}(4-x) d x+\int_{4}^{6}(x-4) d x=16-8-(8-2)+18-24-(8-16)=4$
9. (A) $\mathrm{xy}=192$ and $\mathrm{x}+\mathrm{y}=\mathrm{S} \Rightarrow \mathrm{y}=192 / \mathrm{x} \Rightarrow \mathrm{x}+192 / \mathrm{x}=\mathrm{S} \Rightarrow 1-\frac{192}{x^{2}}=\mathrm{S}^{\prime}=0$ $\Rightarrow \mathrm{x}=\sqrt{192}$ (looking for positive value) $\Rightarrow>\mathrm{y}=\sqrt{192}$ (question says that radicals must be simplified) $\Rightarrow>(A, B)=(8 \sqrt{3}, 8 \sqrt{3})$
(B) $x y=192$ and $x+3 y=S \ldots$ using the same substitution procedure as above \ldots $(\mathrm{A}, \mathrm{B})=(24,8)$
(C) Same substitution procedure as in part (A) above $=>(A, B)=(6 \sqrt{3}, 6 \sqrt{3})$
(D) Same substitution procedure as in part (B) above $\Rightarrow(A, B)=(18,6)$
10. $(3 x)\left(2 y y^{\prime}\right)+\left(3 y^{2}\right)+2 x^{2} y^{\prime}+4 x y+4 y^{\prime}=x y^{\prime}+y \Rightarrow 6 x y y^{\prime}+2 x^{2} y^{\prime}+4 y^{\prime}-x y^{\prime}=y-4 x y-3 y^{2}$ $\Rightarrow y^{\prime}\left(6 x y+2 x^{2}+4-x\right)=y-4 x y-3 y^{2} \Rightarrow y^{\prime}=\frac{y-4 x y-3 y^{2}}{6 x y+2 x^{2}+4-x}$
(note: all points listed are on the curve)
(A) plugging in $(0,0)$ into y^{\prime}, we get $y^{\prime}=0 / 4=0$
(B) plugging in $(1,-5 / 3)$ into y^{\prime}, we get $y^{\prime}=\frac{\frac{-5}{3}+\frac{20}{3}-\frac{25}{3}}{-10+2+4-1}=\frac{\frac{-10}{3}}{-5}=\frac{2}{3}$
(C) using part (B), we take the negative reciprocal and get $\frac{-3}{2}$
(D) plugging in $(-1,7 / 3)$ into y^{\prime}, we get $y^{\prime}=\frac{\frac{7}{3}+\frac{28}{3}-\frac{49}{3}}{-14+2+4+1}=\frac{\frac{-14}{3}}{-7}=\frac{2}{3}$
11. (A) $\mathrm{f}^{\prime}\left(\frac{7 \pi}{6}\right)=12\left(\sec \frac{7 \pi}{6}\right)\left(\tan \frac{7 \pi}{6}\right)=(12)\left(\frac{-2}{\sqrt{3}}\right)\left(\frac{\sqrt{3}}{3}\right)=-8$
(B) $\mathrm{f}^{\prime}\left(\frac{14 \pi}{3}\right)=-3\left(-\csc \frac{14 \pi}{3}\right)\left(\cot \frac{14 \pi}{3}\right)=(3)\left(\frac{2}{\sqrt{3}}\right)\left(\frac{-1}{\sqrt{3}}\right)=-2$
(C) $\mathrm{f}^{\prime}\left(\frac{\pi}{4}+\frac{\pi}{6}\right)=4 \cos \left(\frac{\pi}{4}+\frac{\pi}{6}\right)=4\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\sqrt{6}-\sqrt{2}$ (using sum/difference)
(D) $\mathrm{f}^{\prime}\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=-20 \cos \left(\frac{\pi}{4}-\frac{\pi}{6}\right)=-20\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=-5(\sqrt{6}-\sqrt{2})$ or $5(\sqrt{2}-\sqrt{6})$
12. $(\mathrm{A})=\frac{\left(3^{5}-3^{1}\right)}{\ln (3)}=\frac{240}{\ln (3)}$
(B) letting $\mathrm{u}=2 \mathrm{x}-1$, we get $\mathrm{x}=\frac{u+1}{2}$ and $\mathrm{dx}=\frac{d u}{2} \ldots$ changing our integral \ldots

$$
\frac{1}{4} \int_{0}^{4} \frac{u+1}{u^{1 / 2}} d u=\frac{1}{4} \int_{0}^{4}\left(u^{1 / 2}+u^{-1 / 2}\right) d u=\frac{1}{4}\left(\frac{16}{3}+4\right)=\frac{7}{3}
$$

(C) $=\left(\sin \frac{\pi}{3}-2 \tan \frac{\pi}{3}\right)-\left(\sin \frac{\pi}{4}-2 \tan \frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}-2 \sqrt{3}-\frac{\sqrt{2}}{2}+2=\frac{4-\sqrt{2}-3 \sqrt{3}}{2}$
(D) using integration by parts with $\mathrm{u}=\mathrm{x}$ and $\mathrm{dv}=e^{x} d x$, the integral is equivalent to $4\left[x e^{x}-\int e^{x} d x\right]=4 e^{x}(x-1)$ evaluated from 0 to $4=12 e^{4}+4$ or $4\left(3 e^{4}+1\right)$
13. (A) $f^{\prime}(x)=45 x^{4}+\frac{1}{x}+\sin x$
(B) $f^{\prime \prime}(x)=180 x^{3}+\frac{-1}{x^{2}}+\cos x$
(C) $f^{(3)}(x)=540 x^{2}+\frac{2}{x^{3}}-\sin x$
(D) $f^{(4)}(x)=1080 x+\frac{-6}{x^{4}}-\cos x$
14. (A) $\ln (20)=\ln (4)+\ln (5)=2 \ln (2)+\ln (5)=2(0.69)+1.61=2.99$
(B) $\ln \left(\frac{5}{2}\right)=\ln (5)-\ln (2)=1.61-0.69=0.92$
(C) $\ln \left(\frac{1}{40}\right)=\ln (1)-\ln (40)=0-\left(\ln \left(2^{3}\right)+\ln (5)=-[3 \ln (2)+\ln (5)]=-[(3)(0.69)+1.61]\right.$
$=-3.68$
$(\mathrm{D})=(1 / 3) \ln (200)=(1 / 3)[3 \ln (2)+2 \ln (5)]=(1 / 3)[(3)(0.69)+(2)(1.61)]=5.29 / 3=1.76$
(to two decimal places as stated in the question)
15. (A) $f^{\prime \prime}(x)=6 x-12 \Rightarrow \mathbf{x}=2$ is a possible point of inflection...checking for change of sign confirms that the point $(2,8)$ is the only point of inflection.
(B) $f^{\prime \prime}(x)=24 x^{2}=>\mathrm{x}=0$ is a possible point of inflection...checking for change of sign, we determine that there is no point of inflection
(C) $f^{\prime \prime}(x)=72 x^{2}-54 x=18 x(4 x-3)=>\mathrm{x}=0$ and $\mathrm{x}=3 / 4$ are possible points of inflection \ldots checking for change of sign confirms that $(0,0)$ and $(3 / 4,-243 / 128)$ are both points of inflection.
(D) $f^{\prime \prime}(x)=\frac{-1}{4} x^{-3 / 2}+\frac{3}{4} x^{-5 / 2}=\frac{-1}{4} x^{-3 / 2}\left(1-\frac{3}{x}\right)=>\mathrm{x}=0$ and $\mathrm{x}=3$ are possible points of inflection...checking for change of sign we find that only $\left(3, \frac{4 \sqrt{3}}{3}\right)$ is a point of inflection.

1. (A) $\frac{101}{20}$
(B) $\frac{493}{70}$
(C) $\frac{217}{24}$
(D) $\frac{997}{100}$
2. (A) DNE
(B) $\frac{-4}{9}$
(C) $\frac{-1}{48}$
(D) $-\sqrt{2}$
3. (A) 2181
(B) 192
(C) 11130
(D) 285
4. (A) $\frac{-2}{3}$
(B) $\frac{13}{3}$
(C) $\frac{6}{7} \ln 2$
(D) $\frac{3(\sqrt{3}-1)}{\pi}$
5. (A) 74
(B) $\frac{1155}{4}$
(C) -280
(D) $\frac{71}{2}$
6. (A) $-1,0,1$ (in any order)
(B) Does Not Apply
(C) $\frac{-3}{2}$
(D) $\frac{3-2 \sqrt{3}}{3}$
7. (A) $(3, \infty)$ or $[3, \infty)$
(B) $(-\infty, 3)$ or $(-\infty, 3]$
(C) $(-\infty, 0) \cup(2, \infty)$
(D) $(0,2)$
8. (A) 2
(B) $\frac{17}{2}$
(C) 17
(D) 4
9. $(\mathrm{A})(8 \sqrt{3}, 8 \sqrt{3})$
(B) $(24,8)$
(C) $(6 \sqrt{3}, 6 \sqrt{3})$
(D) $(18,6)$
10. (A) 0
(B) $\frac{2}{3}$
(C) $\frac{-3}{2}$
(D) $\frac{1}{3}$
11. (A) -8
(B) -2
(C) $\sqrt{6}-\sqrt{2}$ or $2 \sqrt{2-\sqrt{3}}$
(D) $5(\sqrt{2}-\sqrt{6})$ or $-10 \sqrt{2-\sqrt{3}}$ \{or an equivalent form $\}$
12. (A) $\frac{240}{\ln (3)}$
(C) $\frac{4-\sqrt{2}-3 \sqrt{3}}{2}\{$ or an equivalent form $\}$
(B) $\frac{7}{3}$
(D) $12 e^{4}+4\left\{\right.$ or $\left.4\left(3 e^{4}+1\right)\right\}$
13. (A) $45 x^{4}+\frac{1}{x}+\sin x$
(C) $540 x^{2}+\frac{2}{x^{3}}-\sin x$
(B) $180 x^{3}+\frac{-1}{x^{2}}+\cos x$
(D) $1080 x+\frac{-6}{x^{4}}-\cos x$
14. (A) 2.99
(B) 0.92
(C) -3.68
(D) 1.76
15. (A) $(2,8)$
(B) No Point of Inflection
(C) $(0,0)$ and $(3 / 4,-243 / 128)$
(D) $\left(3, \frac{4 \sqrt{3}}{3}\right)$

Individual

1. B
2. C
3. E
4. A
5. D
6. A
7. E
8. A
9. C 10.C
11.A
12.D
13.B
14.A
15.D
16.A
17.C
18.D
19.A
20.C
21.D
22.B
23.A
24.A
25.E
26.C
27.A
28.C
29.C
30.B

Team
1.
a.

