1.
$$\int_{0}^{\frac{3}{2}} \frac{dx}{\sqrt{9-4x^{2}}}$$
(A) $\pi/2$

(B) π/4
(C) 1/2
(D) 1
(E) NOTA

2. The inverse of
$$f(x) = \frac{x}{\sqrt{x^2 + 7}}$$
 can be

written in the form

 $f^{-1}(x) = \frac{x\sqrt{A}}{\sqrt{B-x^2}}$ with -1 < x < 1 and A and B integers. Find the value of A + B.

(E) NOTA

3.
$$\lim_{x \to -\infty} \frac{68x - 19}{\sqrt{6x^2 + 9}} = ?$$

(A)
$$34\sqrt{3}$$

(B) -19/9
(C) -34 $\sqrt{6}$
(D) $68\sqrt{6}$
(E) NOTA

4. Determine the equation of the line normal to the curve $3(x^2 + y^2)^2 = 100xy$ at the point (3, 1).

(A)
$$9x + 13y = 40$$

(B) $2x - y = 5$
(C) $x + 2y = 5$
(D) $3x + 2y = 11$
(E) NOTA

5. If
$$y = Log_8 \cos^4 x$$
, then $\frac{dy}{dx} = ?$
(A) $(-4\cos^3 x)(\sin x)(\ln 8)(8^{\cos^4 x})$
(B) $\frac{1}{(\ln 4096)(\cos^3 x)}$
(C) $(-4\sin x)(4\log_8 \cos^3 x)$
(D) $\frac{-4\tan x}{3\ln 2}$
(E) NOTA

6. Find the maximum area of a rectangle with perimeter M units.

(A)
$$\frac{M^2}{16}$$

(B) $\frac{M^2}{18}$
(C) $\frac{M^2}{12}$
(D) $\frac{M^2}{8}$
(E) NOTA
7. $\lim_{x\to 0} \frac{16\sin 8x \cos 8x}{x} = ?$
(A) 8
(B) 16
(C) 24
(D) 32
(E) NOTA
8. $\int_{\pi}^{27\pi} |\sin \theta| d\theta = ?$
(A) 25
(B) 23
(C) 11.5
(D) 13
(E) NOTA

- 9. If f(x) = |x² 4|, g(x) = |x|cosx and h(x) = f(x)g(x), then h'(1) = ?
 (A) 3sin1 - cos1
 (B) -3sin1 + 5cos1
 (C) -3sin1 + cos1
 (D) -5sin1 - cos1
 (E) NOTA
- 10. Find the area of the region between the graphs $f(x) = 4(x^3 - x)$ and g(x) = 0.
 - (A) -2 (B) 0
 - (D) 0(C) 2
 - (D) 4
 - (E) NOTA
- 11. The displacement from equilibrium of an object in motion at time t is

given by $y = \frac{1}{4}\cos(12t) - \frac{1}{3}\sin(12t)$. Determine the velocity of the object when $t = \frac{\pi}{8}$. (A) 3 (B) -7

- (C) 1 (D) -1
- (E) NOTA

12. If $y = e^{\frac{\sin(2x)}{x}}$, then y'(1) = ?

(A) $(2e^{\sin 2})(\cos 2 - \sin 2)$ (B) $(e^{\sin 2})(\cos 2 - 2\sin 2)$ (C) $(e^{\sin 2})(\cos 2 + 2\sin 2)$ (D) $(e^{\sin 2})(2\cos 2 - \sin 2)$ (E) NOTA 13. A conical tank (with vertex down) has a diameter 14 feet across the top and 10 feet deep. If oil is flowing into the tank at a rate of 8 cubic feet per minute, find the rate of change of the depth of water (in $\frac{\text{ft}}{\text{min}}$) when

the water is 6 feet deep.

(A) $\frac{5}{24\pi}$ (B) $\frac{200}{441\pi}$ (C) $\frac{49}{100\pi}$ (D) $\frac{1}{2\pi}$ (E) NOTA

14. Find the sum of the x and y-coordinates of the point on the graph of the function $f(x) = \sqrt{x-8}$ closest to the point (2, 0).

- (A) 8 (B) 1.5 (C) 2
- (D) 10
- (E) NOTA
- 15. Use the trapezoidal rule for approximating integrals with n = 4 to

approximate $\int_{0}^{\pi} (\cos^{2} x) dx$. (A) $\frac{3\pi}{8}$ (B) 1 (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$ (E) NOTA

16.
$$\lim_{x \to 1} \frac{6 \arctan x - \frac{3\pi}{2}}{x - 1} = ?$$
(A) 3
(B) 2
(C) 1.5
(D) 1
(E) NOTA

17. Evaluate:
$$\lim_{x \to \infty} (1 + \frac{1}{3x})^{2x}$$

(A)
$$\frac{2}{e^{3}}$$

(B) $\frac{e^{2}}{3}$
(C) $\sqrt[3]{e^{2}}$
(D) $\sqrt{e^{3}}$
(E) NOTA

18. The half-life of a substance is 398 years. If 28 grams of the substance are present in a sample initially, how much will be present after 1393 years?

(A)
$$\frac{7}{2}$$

(B) $\frac{7\sqrt{2}}{2}$
(C) $\frac{14\sqrt{2}}{2}$
(D) $\frac{7\sqrt{2}}{4}$
(E) NOTA

19. If
$$f(x) = \frac{(x-2)^2}{\sqrt{x^2+1}}$$
 with $x \neq 2$, then
f'(0) = ?
(A) -4
(B) -2
(C) $-\sqrt{2}$
(D) Undefined
(E) NOTA

- 20. What is the minimum value of the second derivative of $y = x^4 + 6x^3 + 4x + 1?$
 - (A) -3/2
 - (B) -58
 - (C) -27
 - (D) -3
 - (E) NOTA
- 21. Which of the following is **false** about the graph of $f(x) = 2x^{5/3} 5x^{4/3}$?
 - (A) Increasing and concave downward on $-\infty < x < 0$
 - (B) Decreasing and concave upward on 1 < x < 8
 - (C) Decreasing and concave downward on 0 < x < 1
 - (D) Increasing and concave downward on $8 < x < \infty$
 - (E) NOTA

22.
$$\sum_{n=1}^{16} n^2 = ?$$

(A) 1512
(B) 1496
(C) 1484
(D) 1458
(E) NOTA

- 23. Find the average value of the function $f(x) = x^2 + 6x + 10$ over the interval [-3, -1].
 - (A) 7/3
 (B) 3
 (C) 9/2
 (D) 2
 (E) NOTA
- 24. Calculate two iterations (find x_3) of Newton's Method using $x_1 = 1$ as the initial guess to approximate a zero of $f(x) = 3x^2 - 1$.
 - (A) 7/12
 (B) 3/5
 (C) 5/9
 (D) 4/7
 (E) NOTA

25. If
$$f(\theta) = \frac{\sin \theta}{1 - \cos \theta}$$
, then $f'(\theta) = ?$

(A)
$$\tan \theta$$

(B) $\frac{1}{1 - \cos \theta}$
(C) $\frac{\cos \theta}{\cos \theta - 1}$
(D) $\frac{-\sin \theta}{1 - \cos \theta}$
(E) NOTA

- 26. According to "Charlie's Law," if the temperature of a particular gas remains constant, the pressure is inversely proportional to the square of the volume. Which of the following statements is true?
 - (A) The rate of change of the pressure is inversely proportional to the square of the volume.
 - (B) The rate of change of the pressure is directly proportional to the volume.
 - (C) The rate of change of the pressure is inversely proportional to the cube of the volume.
 - (D) The rate of change of the pressure is directly proportional to the square of the volume.(E) NOTA

27.
$$\int_{0}^{\frac{\pi}{6}} 6\sqrt{1 + \tan^2 x} dx = ?$$

(A) 3ln(3)
(B) 4
(C) 2ln(1/3)
(D) (1/2)ln(2)
(E) NOTA

28. A population of parrots in the wild can be modeled by the function

 $P(t) = \frac{100t^2}{t^2 + 1}$ if $t \ge 0$, where t is

measured in years and P is measured in hundreds of parrots. How many years from the present time is the parrot population growing fastest?

(A) 0
(B)
$$\frac{1}{3}$$

(C) $\frac{\sqrt{3}}{3}$
(D) 1
(E) NOTA

29. If
$$y = 2x^3 - 15x^2 - 144x$$
, then

$$\frac{dy}{d(x^2 - 16x)} = ?$$
(A) $6x + 12$
(B) $6x^2 - 30x - 144$
(C) $3x + 9$
(D) $x^2 - \frac{15}{2}x - 72$
(E) NOTA
30. If $\frac{A}{x+6} + \frac{B}{x-5} = \frac{x-27}{x^2 + x - 30}$,

30.
$$\prod \frac{x+6}{x+6} + \frac{x-5}{x-5} = \frac{x^2 + x - 30}{x^2 + x - 30},$$

then B = ?
(A) 3
(B) -2
(C) -3
(D) 9
(E) NOTA

Who needs one of those things to do math?

Calculus Team: Question #1

Use differentials to *approximate* each radical. Use the function $f(x) = \sqrt{x}$ and the given values for x and dx. Write your answers as <u>simplified</u> <u>improper fractions</u>.

(A) Approximate $\sqrt{25.5}$ using x = 25 and dx = 0.5

- (B) Approximate $\sqrt{49.6}$ using x = 49 and dx = 0.6
- (C) Approximate $\sqrt{81.75}$ using x = 81 and dx = 0.75
- (D) Approximate $\sqrt{99.4}$ using x = 100 and dx = -0.6

2008 Lee County Invitational

Calculus Team: Question #2

Find the exact value of each limit. If the limit does not exist (or approaches positive or negative infinity) write *DNE*.

(A)
$$\lim_{x \to 0} \frac{x^4 + 5x - 3}{2 - \sqrt{x^2 + 4}}$$

(B)
$$\lim_{x \to 1} \frac{x^{1/3} - 1}{x^{0.25} - x}$$

(C)
$$\lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x^3 + 8}$$

(D)
$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{\sin x - \cos x}$$

Find each sum.

(A)
$$\sum_{i=1}^{18} (i^2 + 4)$$

(B) $\sum_{i=4}^{15} (2i - 3)$
(C) $\sum_{i=1}^{14} (i^3 + i)$
(D) $\sum_{i=1}^{10} (i - 1)^2$

2008 Lee County Invitational Calculus Team: Question #4

Find the average value of each function on the given interval.

(A)
$$f(x) = x - 2\sqrt{x}$$
 on the interval [0, 4]

(B)
$$f(x) = x^2 - 4$$
 on the interval [0, 5]

(C)
$$f(x) = \frac{2}{x}$$
 on the interval [1, 8] [Answer *must be* in terms of ln(2)]

(D) $f(x) = \cos x - \sin x$ on the interval $[0, \frac{\pi}{6}]$

Calculus Team: Question #5

$$h(x) = f(x)g(x)$$
 and $p(x) = \frac{f(x)}{g(x)}$

Use the table below to find the exact values of the derivatives at the given points. Write your answers in *simplified fraction form*.

	x = 1	x = 2
f(x)	4	6
g(x)	1/3	1/2
f'(x)	1/4	4
g'(x)	-8	12
f''(x)	-3/2	-1
<i>g</i> "(<i>x</i>)	10	-2

(A) $h'(2) = ?$ (B)	p'(1) = ? (C	C) $p'(2) = ?$ ((D) $h''(1) = ?$
---------------------	--------------	------------------	------------------

2008 Lee County Invitational

Calculus Team: Question #6

For each part, find the value(s) of c guaranteed by the indicated theorem. If the stated theorem does not apply, write "*does not apply*".

- (A) Find all values of "c" that satisfy Rolle's Theorem for $f(x) = x^4 2x^2$ on the interval [-2, 2].
- (B) Find all values of "c" that satisfy Rolle's Theorem for $f(x) = x x^{\frac{1}{3}}$ on the interval [-1, 1].
- (C) Find all values of "c" that satisfy the Mean Value Theorem for derivatives for $f(x) = x^2$ on the interval [-4, 1].
- (D) Find all values of "c" that satisfy the Mean Value Theorem for derivatives for $f(x) = x(x^2 3x 4)$ on the interval [-1, 1].

Given the function $f(x) = x^4 - 4x^3$,

(A) On what interval(s) is f(x) increasing?

(B) On what interval(s) is f(x) decreasing?

- (C) On what interval(s) is f(x) concave upward?
- (D) On what interval(s) is f(x) concave downward?

2008 Lee County Invitational

Calculus Team: Question #8

Find the exact value of each definite integral.

(A)
$$\int_{0}^{2} |x-2| dx$$

(B) $\int_{0}^{4} |2x-3| dx$
(C) $\int_{0}^{5} |8-2x| dx$
(D) $\int_{2}^{6} |4-x| dx$

Calculus Team: Question #9

For each of the following, find two positive numbers A and B that satisfy the given requirements. *All radicals must be in simplest form* and answers for each part should be given in the form (A, B).

- (A) The product is 192 and the sum is a minimum.
- (B) The product is 192 and the sum of the first and three times the second is a minimum, where A is the first number and B is the second number.
- (C) The product is 108 and the sum is a minimum.
- (D) The product is 108 and the sum of the first and three times the second is a minimum, where A is the first number and B is the second number.

2008 Lee County Invitational

Calculus Team: Question #10

Given the curve: $3xy^2 + 2x^2y + 4y = xy$,

- (A) Find the slope of the tangent to the curve at the point (0, 0).
- (B) Find the slope of the tangent to the curve at the point (1, -5/3)
- (C) Find the slope of the normal to the curve at the point (1, -5/3)
- (D) Find the slope of the tangent to the curve at the point (-1, 7/3)

For each part, find the *exact value*.

(A) If
$$f(x) = 12 \sec x$$
, then $f'(\frac{7\pi}{6}) = ?$

(B) If
$$f(x) = -3\csc x$$
, then $f'(\frac{14\pi}{3}) = ?$

(C) If
$$f(x) = 4\sin x$$
, then $f'(\frac{5\pi}{12}) = ?$

(D) If
$$f(x) = 20\cos x$$
, then $f'(\frac{\pi}{12}) = ?$

2008 Lee County Invitational

Calculus Team: Question #12

For each part, find the *exact value* of the definite integral.

(A)
$$\int_{1}^{5} 3^{x} dx = ?$$

(B) $\int_{1/2}^{5/2} \frac{x}{\sqrt{2x-1}} dx = ?$
(C) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\cos x - 2 \sec^{2} x) dx = ?$
(D) $\int_{0}^{4} 4xe^{x} dx = ?$

2008 L	ee Cou	inty In	vitati	ional
--------	--------	---------	--------	-------

If $f(x) = 9x^5 + \ln(x) - \cos x$, then

- (A) f'(x) = ?
- (B) f''(x) = ?
- (C) $f^{(3)}(x) = ?$
- (D) $f^{(4)}(x) = ?$

2008 Lee County Invitational

Calculus Team: Question #14

Given that ln(2) = 0.69 and ln(5) = 1.61, use the properties of logarithms to approximate each of the following to two decimal places.

(A) $\ln(20) = ?$ (B) $\ln(\frac{5}{2}) = ?$ (C) $\ln(\frac{1}{40}) = ?$ (D) $\ln(\sqrt[3]{200}) = ?$

Calculus Team: Question #15

For each of the following, find *all* points of inflection.

(A)
$$f(x) = x^3 - 6x^2 + 12x$$

(B)
$$f(x) = 2x^4 - 8x + 3$$

(C)
$$f(x) = 6x^4 - 9x^3$$

(D)
$$f(x) = \frac{x+1}{\sqrt{x}}$$

- 1. $\frac{1}{2}\int_{-\pi}^{\pi/2} \frac{2dx}{\sqrt{9-4x^2}} = \frac{1}{2}\arcsin\frac{2(3/2)}{3} \frac{1}{2}\arcsin\frac{2(0)}{3} = (\frac{1}{2}\arcsin 1 \frac{1}{2}\arcsin 0) = (\frac{1}{2})(\frac{\pi}{2})$ $=\frac{\pi}{4}$ => **B** 2. $y = \frac{x}{\sqrt{x^2 + 7}} \Rightarrow y^2 = \frac{x^2}{x^2 + 7} \Rightarrow x^2 y^2 + 7 y^2 = x^2 \Rightarrow \frac{7y^2}{1 - y^2} = x^2 \Rightarrow \frac{y\sqrt{7}}{\sqrt{1 - y^2}} = x \dots$ switch the x's and y's so that $f^{-1}(x) = \frac{x\sqrt{7}}{\sqrt{1-x^2}} \Rightarrow A = 7$ and $B = 1 \Rightarrow A + B = 8$ $\Rightarrow \mathbf{C}$ 3. Multiply both top and bottom by $\frac{1}{\sqrt{r^2}}$ and the limit $=\frac{-68}{\sqrt{6}}=\frac{-34\sqrt{6}}{3}=>\mathbf{E}$ 4. $6(x^2 + y^2)(2x + 2yy') = 100(xy' + y)$... now plug in (3,1) and solve... 6(9+1)(6+2y') = 100(3y'+1) =>360+120y' = 300y' + 100 =>180y' = 260 => $y' = 26/18 = 13/9 \Rightarrow$ slope of normal = -9/13 and the equation of the line through (3,1) with slope -9/13 is $9x + 13y = 40 \Rightarrow A$ 5. $\frac{dy}{dx} = \frac{(4\cos^3 x)(-\sin x)}{(\ln 8)(\cos^4 x)} = \frac{-4\sin x}{(3\ln 2)(\cos x)} = \frac{-4\tan x}{3\ln 2} => \mathbf{D}$ 6. $2x + 2y = M = A = xy = x(\frac{M-2x}{2}) = \frac{Mx-2x^2}{2} = A = \frac{M}{2} - 2x$...to find critical points we set equal to $0 \Rightarrow 0 = \frac{M}{2} - 2x \Rightarrow x = \frac{M}{4}$ and plugging into first equation above we get $y = \frac{M}{4} \implies maximum area = (\frac{M}{4})(\frac{M}{4}) = \frac{M^2}{16} \implies A$ 7. $\lim_{x \to 0} \frac{16\sin(8x)\cos(8x)}{x} = \lim_{x \to 0} \frac{16\cos(8x)}{1} \bullet \frac{8\sin(8x)}{8x} = \lim_{x \to 0} \frac{16\cos(8x)}{1} (8)(1) = \lim_{x \to 0} (16\cos(8x))(8)$ = 16(8)(cos 0) = 128 \Rightarrow E 8. $12.5\int \sin\theta d\theta = (12.5)(2) = 25 => \mathbf{A}$ 9. h' = fg' + gf' = $(|x^2 - 4|)(-|x|\sin x + \frac{x}{|x|}\cos x) + (|x|\cos x)(\frac{2x^2 - 8x}{|x^2 - 4|}) \dots$ note: $\frac{d(|u|)}{dx} = \frac{u'u}{|u|}$...plugging in x = 1 => 3(-sin1 + cos1) + (cos1)(-2) = $\cos 1 - 3\sin 1 \Rightarrow C$
- 10. Area = $\int_{a}^{b} (f(x) g(x)) dx$, where a and b are the x coordinates of the intersection

points of the curves, and f(x) is the top curve, and g(x) is the bottom curve. There are three intersection points and for [-1,0] f(x) is the top curve, but from [0,1] g(x) is the top curve, so to find the area you evaluate

Area =
$$\int_{-1}^{0} (4x^3 - 4x) dx + \int_{0}^{1} (4x - 4x^3) dx = x^4 - 2x^2 \Big|_{-1}^{0} + 2x^2 - x^4 \Big|_{0}^{1} = 1 + 1 = 2 .=> \mathbb{C}$$

11. y' = $-3\sin 12t - 4\cos 12t =>$ at t = $\frac{\pi}{8}$ we get $-3\sin \frac{3\pi}{2} - 4\cos \frac{3\pi}{2} = -3(-1) = 3$
 $=> \mathbb{A}$
12. y' = $(2x\cos 2x - \sin 2x)(e^{\frac{\sin 2x}{x}}) => y'(1) = (2\cos 2 - \sin 2)(e^{\sin 2}) => \mathbb{D}$

13.
$$V = \frac{\pi r^2 h}{3}$$
 and $\frac{7}{10} = \frac{r}{h} => r = 7h/10 => V = \frac{49\pi h^3}{300} => \frac{dv}{dt} = (\frac{49\pi}{100})(h^2)(\frac{dh}{dt}) => 8 = (\frac{49\pi}{100})(36)(\frac{dh}{dt}) => \frac{2}{9} = (\frac{49\pi}{100})(\frac{dh}{dt}) => \frac{dh}{dt} = \frac{200}{441\pi} => \mathbf{B}$

14. Looking for critical points where f(x) is defined...on $[8, \infty]$ we find none inside of the interval so, using the endpoint x = 8 we find that the point (8, 0) is the closest point on the graph to (2,0)...or simply draw the graph => sum = 8 => A

15.
$$\frac{\pi}{8}(\cos^2 0 + 2\cos^2 \frac{\pi}{4} + 2\cos^2 \frac{\pi}{2} + 2\cos^2 \frac{3\pi}{4} + \cos^2 \pi) = \frac{\pi}{8}(1 + 1 + 0 + 1 + 1) = \frac{\pi}{2} => \mathbf{D}$$

16. L'hopital's rule => $\lim_{x \to 1} \frac{\frac{6}{1 + x^2}}{1} = \frac{\frac{6}{2}}{1} = 3 => \mathbf{A}$

17. By definition
$$e = \lim_{x \to \infty} (1 + \frac{1}{x})^x$$
. This can be extended to show that

$$e^{a/b} = \lim_{x \to \infty} (1 + \frac{1}{bx})^{ax}$$
. So we get $e^{2/3} => C$

18. 1393/398 = 3.5 =>
$$28(\frac{1}{2})^{3.5} = 28(\frac{1}{8})(\frac{\sqrt{2}}{2}) = \frac{7\sqrt{2}}{4} => \mathbf{D}$$

19. Taking the natural log of both sides we get $\ln y = \ln \frac{(x-2)^2}{\sqrt{x^2+1}} = >$

$$\ln y = 2\ln(x-2) - \frac{1}{2}\ln(x^2+1) \Longrightarrow \frac{y'}{y} = \frac{2}{x-2} - \frac{x}{x^2+1} \Longrightarrow$$
$$y' = \frac{(x-2)^2}{\sqrt{x^2+1}} \left[\frac{2}{x-2} - \frac{x}{x^2+1}\right] \Longrightarrow y'(0) = \left(\frac{4}{1}\right)\left(\frac{2}{-2}\right) = 4(-1) = -4 \Longrightarrow \mathbf{A}$$

20. To find the minimum value of the second derivative, we must set the 3^{rd} derivative equal to zero...y' = $4x^3 + 18x^2 + 4$, y'' = $12x^2 + 36x$, y''' = 24x + 36 => 0 = 24x + 36 => 24x = -36 => x = -3/2 (upon testing we find this to be a minimum) => y''(-3/2) = $12(9/4) + 36(-3/2) = 27 - 54 = -27 => \mathbb{C}$

- 21. $f'(x) = \frac{10}{3} x^{1/3} (x^{1/3} 2)$ and $f''(x) = \frac{20(x^{1/3} 1)}{9x^{2/3}}$. The function has two critical numbers at x = 0 and x = 8 and two possible points of inflection at x = 0 and x = 1. The domain is all real numbers. f'(x) is positive and f''(x) is negative on $-\infty < x < 0$, so (A) is true. Continuing the analysis in the same way, we find (B) and (C) to be true. Since f''(x) is positive on $8 < x < \infty$, the graph is concave upward on that interval and (D) is false $=> \mathbf{D}$ 22. Sum of squares from 1 to n is given by $\frac{n(n+1)(2n+1)}{6}$...plugging in n = 16 gives $\frac{16(17)(33)}{6} = (8)(17)(11) = (88)(17) = 1496 => \mathbf{B}$ 23. $\frac{1}{-1-(-3)}\int_{-3}^{-1} (x^2 + 6x + 10)dx = \frac{1}{2}[\frac{x^3}{3} + 3x^2 + 10x]$ evaluated from -3 to -1 = $\frac{1}{2}[(\frac{-1}{3} + 3 - 10) - (-9 + 27 - 30)] = \frac{1}{2}(\frac{-22}{3} + 12) = \frac{1}{2}(\frac{14}{3}) = \frac{7}{3} => \mathbf{A}$ 24. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ and f'(x) = 6x. $x_2 = 1 - \frac{2}{6} = \frac{2}{3} => x_3 = \frac{2}{3} - \frac{1/3}{4} = \frac{2}{3} - \frac{1}{12} = \frac{7}{12} => \mathbf{A}$
- 25. $\frac{(1-\cos\theta)(\cos\theta)-(\sin\theta)(\sin\theta)}{(1-\cos\theta)^2} = \frac{\cos\theta-\cos^2\theta-\sin^2\theta}{(1-\cos\theta)^2} = \frac{\cos\theta-1}{(1-\cos\theta)^2} = \frac{-1}{1-\cos\theta}$ $=> \mathbf{E}$ 26. $P = \frac{Tk}{V^2} => P' = \frac{-2Tk}{V^3} => \mathbf{C}$ $\frac{\pi}{V}$
- 27. = $6\int_{0}^{6} \sec x dx$ (note: we can eliminate the absolute value when removing from the radical because it's positive from 0 to $\pi/6$) = $6\ln|\sec x + \tan x|$ evaluated from 0 to $\pi/6 = 6(\ln|\frac{2\sqrt{3}}{3} + \frac{\sqrt{3}}{3}| \ln|1|) = 6\ln\sqrt{3} = 3\ln3 \Rightarrow A$

28.	The parrot population is growing fastest when the 1 st derivative is at a
	maximum. So $P'(t) = \frac{200t(t^2 + 1) - 100t^2(2t)}{(t^2 + 1)^2} = \frac{200t}{(t^2 + 1)^2}$, then
	$P^{\prime\prime}(t) = \frac{200(t^2+1)^2 - 200t[2(t^2+1)(2t)]}{(t^2+1)^4} = \frac{200(t^2+1)[(t^2+1) - 2(2t)(t)]}{(t^2+1)^4} = \frac{200(-3t^2+1)}{(t^2+1)^3}$
	. P"(t) has a critical value when the numerator is 0 (the denominator cannot be 0 since setting it equal to 0 gives imaginary roots). So the
	critical values we get by setting the numerator equal to 0 are $t = \pm \sqrt{\frac{1}{3}}$. By
	the domain restrictions, the only possible t is $t = \sqrt{\frac{1}{3}} = \frac{\sqrt{3}}{3}$. Testing this
	value shows that this is in fact the value that maximizes P ". => C
29.	$\frac{dy}{d(x^2 - 16x)} = \frac{dy/dx}{d(x^2 - 16x)/dx} = \frac{6x^2 - 30x - 144}{2x - 16} =$
	$\frac{3x^2 - 15x - 72}{x - 8} = \frac{(x - 8)(3x + 9)}{x - 8} = 3x + 9 \implies \mathbb{C}$
30.	A(x-5) + B(x+6) = x - 27. Plugging in x = 5 to eliminate A, we get 11B = -22

=> B = -2 => B

B
 C
 E
 E
 A

5	D
<i>З</i> .	
о. –	A
7.	E
8.	А
9.	С
10	С
11	Δ
10	.л Л
12	.D
13	.В
14	.A
15	.D
16	А
17	C
10	D.
10	.D
19	.A
20	.C
21	.D
22	B
23	Δ
23	Λ
24	.A T
23	.E
26	.C
27	.A
28	.C
29	.C

30.B

1.
$$f(x) + f'(x)dx = \sqrt{x} + \frac{1}{2\sqrt{x}}dx$$
 (A) $5 + (\frac{1}{10})(\frac{1}{2}) = \boxed{\frac{101}{20}}$
(B) $7 + (\frac{1}{14})(\frac{3}{5}) = \boxed{\frac{493}{70}}$
(C) $9 + (\frac{1}{18})(\frac{3}{4}) = 9 + \frac{1}{24} = \boxed{\frac{217}{24}}$
(D) $10 + (\frac{1}{20})(\frac{-3}{5}) = 10 - \frac{3}{100} = \frac{997}{100}$

2. (A) -3/0 => Indeterminate => DNE
(B) L'hopital's Rule =>
$$\frac{\frac{1}{3}x^{-2/3}}{\frac{1}{4}x^{-3/4} - 1} = \frac{1/3}{-3/4} = \boxed{\frac{-4}{9}}$$

(C) L'hopital's Rule (or factoring) => $\frac{\frac{-1}{x^2}}{3x^2} = \frac{-1/4}{12} = \boxed{\frac{-1}{48}}$
(D) L'hopital's Rule => $\frac{-\sec^2 x}{\cos x + \sin x} = \frac{-2}{\sqrt{2}} = \boxed{-\sqrt{2}}$

3. (A)
$$\frac{n(n+1)(2n+1)}{6} + (18)(4) = \frac{3(19)(37)}{6} + (18)(4) = 2109 + 72 = 2181$$

(B) $\frac{12}{2}(5+27) = (6)(32) = 192$
(C) $[(15)(7)]^2 + (15)(7) = 105^2 + 105 = 11130$
(D) $i^2 - 2i + 1 = \frac{(10)(11)(21)}{6} - (2)(5)(11) + 10 = (35)(11) - 110 + 10 = 285$

4. (A)
$$\frac{1}{4} \int_{0}^{4} (x - 2\sqrt{x}) dx = \frac{1}{4} (8 - \frac{32}{3}) = (\frac{1}{4})(\frac{-8}{3}) = \frac{-2}{3}$$

(B) $\frac{1}{5} \int_{0}^{5} (x^{2} - 4) dx = \frac{1}{5}(\frac{125}{3} - 20) = (\frac{25}{3} - 4) = \frac{13}{3}$
(C) $\frac{1}{7} \int_{1}^{8} \frac{2}{x} dx = \frac{2}{7}(\ln 8 - \ln 1) = \frac{2}{7}\ln 8 = \frac{6}{7}\ln 2$
(D) $\frac{1}{\frac{\pi}{6} - 0} \int_{0}^{\frac{\pi}{6}} (\cos x - \sin x) dx = \frac{6}{\pi} [\frac{1}{2} + \frac{\sqrt{3}}{2} - 1] = \frac{3(\sqrt{3} - 1)}{\pi}$

5. h'(x) = f'(x)g(x) + f(x)g'(x), h''(x) = f'(x)g'(x) + g(x)f''(x) + f(x)g''(x) + g'(x)f'(x), p'(x) = $\frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$ (A) f'(2)g(2) + f(2)g'(2) = (4)(1/2) + (6)(12) = $\boxed{74}$ (B) $\frac{g(1)f'(1) - f(1)g'(1)}{[g(1)]^2} = \frac{(1/3)(1/4) - (4)(-8)}{(1/3)^2} = \frac{\frac{1}{12} + 32}{1/9} = \frac{(385)(9)}{12} = \boxed{\frac{1155}{4}}$ (C) $\frac{g(2)f'(2) - f(2)g'(2)}{[g(2)]^2} = \frac{(1/2)(4) - (6)(12)}{1/4} = (-70)(4) = \boxed{-280}$ (D) f'(1)g'(1) + g(1)f''(1) + f(1)g''(1) + g'(1)f'(1) = 2(1/4)(-8) + (1/3)(-3/2) + (4)(10) $= -4 - 1/2 + 40 = 36 - 1/2 = \boxed{\frac{71}{2}}$ 6. (A) $4x^3 - 4x = 0 \Rightarrow 4x(x^2 - 1) = 0 \Rightarrow x = c = \boxed{1, 0, 1}$ (B) f'(x) = $1 - \frac{1}{3}x^{-2/3} \Rightarrow$ not differentiable at $x = 0 \Rightarrow$ Does Not Apply (C) f'(c) = $2c = \frac{1 - 16}{1 - (-4)} = \frac{-15}{5} = -3 \Rightarrow c = \boxed{\frac{-3}{2}}$ (D) f'(c) = $3c^2 - 6c - 4 = \frac{-6 - 0}{2} = -3 \Rightarrow 3c^2 - 6c - 1 = 0 \Rightarrow c = \frac{3 + 2\sqrt{3}}{3} \text{ and } \frac{3 - 2\sqrt{3}}{3}$ by quadratic formula...but only $\boxed{\frac{3 - 2\sqrt{3}}{3}}$ is in the interval [-1, 1]

7.
$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$
 and $f''(x) = 12x^2 - 24x = 12x(x-2)$
critical points at $x = 0$ and $x = 3$ and possible points of inflection at $x = 0$ and $x = 2$

(A) f ' is positive on (3,∞) so increasing on (3,∞)
(B) f ' is negative on (-∞,3) so decreasing on (-∞,3)
(C) f '' is positive on (-∞,0) and (2,∞) so concave up on (-∞,0) ∪ (2,∞)
(D) f '' is negative on (0, 2) so concave down on (0, 2)

8. (A) =
$$\int_{0}^{2} (2-x)dx = 4 - 4/2 = 2$$

(B) = $\int_{0}^{3/2} (3-2x)dx + \int_{3/2}^{4} (2x-3)dx = 9/2 - 9/4 + 16 - 12 - (9/4 - 9/2) = 9 + 4 - 9/2 = $\frac{17}{2}$
(C) = $\int_{0}^{4} (8-2x)dx + \int_{4}^{5} (2x-8)dx = 32 - 16 + 25 - 40 - (16 - 32) = 17$
(D) = $\int_{2}^{4} (4-x)dx + \int_{4}^{6} (x-4)dx = 16 - 8 - (8 - 2) + 18 - 24 - (8 - 16) = 4$$

9. (A) xy = 192 and $x + y = S \Rightarrow y = 192/x \Rightarrow x + 192/x = S \Rightarrow 1 - \frac{192}{x^2} = S' = 0$ $=x = \sqrt{192}$ (looking for positive value) $=y = \sqrt{192}$ (question says that radicals must be simplified) => (A, B) = $(8\sqrt{3}, 8\sqrt{3})$ (B) xy = 192 and x + 3y = S...using the same substitution procedure as above... (A, B) = (24, 8)(C) Same substitution procedure as in part (A) above => (A, B) = $(6\sqrt{3}, 6\sqrt{3})$ (D) Same substitution procedure as in part (B) above => (A, B) = (18, 6)10. $(3x)(2yy') + (3y^2) + 2x^2y' + 4xy + 4y' = xy' + y => 6xyy' + 2x^2y' + 4y' - xy' = y - 4xy - 3y^2$ $= y'(6xy + 2x^{2} + 4 - x) = y - 4xy - 3y^{2} = y' = \frac{y - 4xy - 3y^{2}}{6xy + 2x^{2} + 4 - x}$ (note: all points listed are on the curve) (A) plugging in (0, 0) into y', we get y' = 0/4 = 0(B) plugging in (1, -5/3) into y', we get y' = $\frac{\frac{-5}{3} + \frac{20}{3} - \frac{25}{3}}{-10 + 2 + 4 - 1} = \frac{\frac{-10}{3}}{-5} = \frac{\frac{2}{3}}{\frac{2}{3}}$ (C) using part (B), we take the negative reciprocal and get $\left|\frac{-3}{2}\right|$ (D) plugging in (-1, 7/3) into y', we get y' = $\frac{\frac{7}{3} + \frac{28}{3} - \frac{49}{3}}{\frac{-14}{3} + 2 + 4 + 1} = \frac{\frac{-14}{3}}{\frac{7}{3}} = \frac{2}{3}$ 11. (A) f' $(\frac{7\pi}{6}) = 12(\sec\frac{7\pi}{6})(\tan\frac{7\pi}{6}) = (12)(\frac{-2}{\sqrt{2}})(\frac{\sqrt{3}}{3}) = 8$ (B) f' $(\frac{14\pi}{3}) = -3(-\csc\frac{14\pi}{3})(\cot\frac{14\pi}{3}) = (3)(\frac{2}{\sqrt{3}})(\frac{-1}{\sqrt{3}}) = -2$ (C) f' $(\frac{\pi}{4} + \frac{\pi}{6}) = 4\cos(\frac{\pi}{4} + \frac{\pi}{6}) = 4(\frac{\sqrt{6} - \sqrt{2}}{4}) = \sqrt{6} - \sqrt{2}$ (using sum/difference) (D) f' $(\frac{\pi}{4} - \frac{\pi}{6}) = -20\cos(\frac{\pi}{4} - \frac{\pi}{6}) = -20(\frac{\sqrt{6} - \sqrt{2}}{4}) = -5(\sqrt{6} - \sqrt{2})$ or $5(\sqrt{2} - \sqrt{6})$ 12. (A) = $\frac{(3^5 - 3^1)}{\ln(3)} = \left|\frac{240}{\ln(3)}\right|$ (B) letting u = 2x - 1, we get $x = \frac{u+1}{2}$ and $dx = \frac{du}{2}$...changing our integral... $\frac{1}{4}\int_{-\infty}^{+\infty} \frac{u+1}{u^{1/2}} du = \frac{1}{4}\int_{-\infty}^{+\infty} (u^{1/2} + u^{-1/2}) du = \frac{1}{4}(\frac{16}{3} + 4) = \left|\frac{7}{3}\right|$

(C) =
$$\left(\sin\frac{\pi}{3} - 2\tan\frac{\pi}{3}\right) - \left(\sin\frac{\pi}{4} - 2\tan\frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} - 2\sqrt{3} - \frac{\sqrt{2}}{2} + 2 = \boxed{\frac{4 - \sqrt{2} - 3\sqrt{3}}{2}}{2}$$

(D) using integration by parts with u = x and $dv = e^x dx$, the integral is equivalent to $4[xe^x - \int e^x dx] = 4e^x(x-1)$ evaluated from 0 to $4 = \boxed{12e^4 + 4 \text{ or } 4(3e^4 + 1)}$

13. (A)
$$f'(x) = 45x^4 + \frac{1}{x} + \sin x$$

(B) $f''(x) = 180x^3 + \frac{-1}{x^2} + \cos x$
(C) $f^{(3)}(x) = 540x^2 + \frac{2}{x^3} - \sin x$
(D) $f^{(4)}(x) = 1080x + \frac{-6}{x^4} - \cos x$

14. (A)
$$\ln(20) = \ln(4) + \ln(5) = 2\ln(2) + \ln(5) = 2(0.69) + 1.61 = 2.99$$

(B) $\ln(\frac{5}{2}) = \ln(5) - \ln(2) = 1.61 - 0.69 = 0.92$
(C) $\ln(\frac{1}{40}) = \ln(1) - \ln(40) = 0 - (\ln(2^3) + \ln(5)) = -[3\ln(2) + \ln(5)] = -[(3)(0.69) + 1.61]$
 $= -3.68$
(D) $= (1/3)\ln(200) = (1/3)[3\ln(2) + 2\ln(5)] = (1/3)[(3)(0.69) + (2)(1.61)] = 5.29/3 = 1.76$
(to two decimal places as stated in the question)

- 15. (A) f''(x) = 6x 12 => x = 2 is a possible point of inflection...checking for change of sign confirms that the point (2,8) is the only point of inflection.
 - (B) $f''(x) = 24x^2 \Rightarrow x = 0$ is a possible point of inflection...checking for change of sign, we determine that there is no point of inflection
 - (C) $f''(x) = 72x^2 54x = 18x(4x 3) => x = 0$ and x = 3/4 are possible points of inflection ... checking for change of sign confirms that (0, 0) and (3/4, -243/128) are both points of inflection.
 - (D) $f''(x) = \frac{-1}{4}x^{-3/2} + \frac{3}{4}x^{-5/2} = \frac{-1}{4}x^{-3/2}(1-\frac{3}{x}) => x = 0$ and x = 3 are possible points of

inflection...checking for change of sign we find that only $\left[(3, \frac{4\sqrt{3}}{3})\right]$ is a point of inflection.

1. (A) $\frac{101}{20}$	(B) $\frac{493}{70}$	(C) $\frac{217}{24}$	(D) $\frac{997}{100}$	
2. (A) DNE	(B) $\frac{-4}{9}$	(C) $\frac{-1}{48}$	(D) $-\sqrt{2}$	
3. (A) 2181	(B) 192	(C) 11130	(D) 285	
4. (A) $\frac{-2}{3}$	$(B)\frac{13}{3}$	(C) $\frac{6}{7}\ln 2$	(D) $\frac{3(\sqrt{3}-1)}{\pi}$	
5. (A) 74	(B) $\frac{1155}{4}$	(C) -280	(D) $\frac{71}{2}$	
6. (A) -1, 0, 1 (i	n any order)	(B) Does Not	t Apply (C) $\frac{-3}{2}$	(D) $\frac{3-2\sqrt{3}}{3}$
7. (A) $(3,\infty)$ or	[3,∞) (B) (-	-∞,3) or (-∞,3] (C) $(-\infty, 0) \cup (2, \infty)$	(D) (0, 2)
8. (A) 2	(B) $\frac{17}{2}$	(C) 17	(D) 4	
9. (A) $(8\sqrt{3}, 8\sqrt{3})$	$\sqrt{3}$) (B) (24,	8) (C) ($6\sqrt{3}$	$(\overline{6}, 6\sqrt{3})$ (D) (18, 6)	
10. (A) 0	(B) $\frac{2}{3}$	(C) $\frac{-3}{2}$	(D) $\frac{1}{3}$	
11. (A) – 8 (D) $5(\sqrt{2} - \sqrt{2})$	(B) – 2 (6) or $-10\sqrt{2}$ -	(C) $\sqrt{6} - \sqrt{2}$ $\sqrt{3}$ {or an equ	or $2\sqrt{2-\sqrt{3}}$ uivalent form}	
12. (A) $\frac{240}{\ln(3)}$	(C) $\frac{4-\sqrt{2}}{2}$	$\frac{-3\sqrt{3}}{4}$ {or an eq	uivalent form}	
(D) $\frac{1}{3}$	(D) 12e +4	(01 4(30 +1)		
13. (A) $45x^4 + \frac{1}{x}$	$+\sin x$	(C) $540x^2 + \frac{1}{2}$	$\frac{2}{x^3} - \sin x$	
(B) $180x^3 + \frac{1}{2}$	$\frac{-1}{x^2} + \cos x$	(D) 1080 <i>x</i> +	$\frac{-6}{x^4} - \cos x$	

January 2008 Inv Fort Myers High	itational School		Calcul	lus Team Solutions Charlie Pease
14. (A) 2.99	(B) 0.92	(C) – 3.68	(D) 1.76	
15. (A) (2,8)	(B) No Point o	f Inflection	(C) (0, 0) and (3/4, -243/12	8) (D) $(3, \frac{4\sqrt{3}}{3})$

Individual	<u>Team</u>
1 B	1
2 C	1.
2. C 3 F	a.
$\Delta \Delta$	
5 D	
5. D	
7 E	
8. A	
9. C	
10.C	
11.A	
12.D	
13.B	
14.A	
15.D	
16.A	
17.C	
18.D	
19.A	
20.C	
21.D	
22.B	
23.A	
24.A	
25.E	
26.C	
27.A	
28.C	
29.C	
3U.B	