# Geometry EOC... a few topics to memorize These are not on your reference sheet!!

Conditional Statement:  $p \rightarrow q$ 

If today is Monday, then tomorrow is Tuesday

Converse:  $q \rightarrow p$ 

If tomorrow is Tuesday, then today is Monday

Inverse:  $\sim p \rightarrow \sim q$ 

If today is **not** Monday, then tomorrow is **not** Tuesday

Contrapositive:  $\sim q \rightarrow \sim p$ 

If tomorrow is **not** Tuesday, then today is **not** Monday

Remember, the Converse and Inverse got married, and had a Contrapositive.

## All Parallelograms:

- Opposite sides are parallel
- Opposite sides are congruent
- Opposite angles are congruent
- Consecutive (adjacent) angles are supplementary
- Diagonals bisect each other

#### Rhombus:

- All sides are congruent
- Diagonals bisect the angles
- Diagonals are perpendicular!!

## Rectangle:

- All angles are congruent
- Diagonals are congruent!!

# Square:

• All of the properties of a Rhombus and a Rectangle

Remember, the Rhombus and Rectangle got married, and had a Square.

# Regular Polygon - Both equilateral AND equiangular

Corresponding Angles are congruent

$$\angle 1 \cong \angle 5$$
,  $\angle 2 \cong \angle 6$ ,  $\angle 3 \cong \angle 7$ ,  $\angle 4 \cong \angle 8$ 

Alternate **Interior** Angles are congruent

$$\angle 3 \cong \angle 6$$
,  $\angle 4 \cong \angle 5$ 

Alternate **Exterior** Angles are congruent

$$\angle 1 \cong \angle 8$$
,  $\angle 2 \cong \angle 7$ 



#### Euler's Formula

# F + V = E + 2

**Platonic Solids:** 

Tetrahedron (aka triangular pyramid) – 4 faces

Hexahedron (aka CUBE!) – 6 faces

Octahedron - 8 faces

Dodecahedron - 12 faces

Icosahedron - 20 faces







decahedron Icosahedron

Equation of a Circle: 
$$(x-h)^2 + (y-k)^2 = r^2$$

Pythagorean Theorem: 
$$a^2 + b^2 = c^2$$

Area of a Sector = 
$$\frac{arcMeasure}{360^{\circ}} \bullet \pi r^2$$

$$\frac{\text{Arc Length}}{360^{\circ}} = \frac{arcMeasure}{360^{\circ}} \bullet 2\pi r$$

Geometric Mean:



# Concurrent Lines and Points of concurrency

The <u>Angle Bisectors</u> of a triangle intersect at the <u>Incenter</u>. The incenter is the center of an inscribed circle.



The <u>Perpendicular Bisectors</u> of a triangle intersect at the <u>Circumcenter</u>. The Circumcenter is the center of a circumscribed circle.



The Medians of a triangle intersect at the Centroid



The <u>Altitudes</u> of a triangle intersect at the <u>Orthocenter</u>

