GK- Mathematics

Resources for Some Math Questions:
Kaplan et al (2015). Cliff Notes FTCE General Knowledge Test, $3^{\text {rd }}$ Edition Mander, E. (2015). FTE General Knowledge Test with Online Practice, $3^{\text {rd }}$ Edition

GK- Math Review Overview

Session

Competency/Skill

\% \# Target

1	Pre-Test 15 Questions			
$1 \& 2$	Number Sense	17	8	6
$3 \& 4$	Algebraic Thinking	29	13	9
$5 \& 6$	Geometry	21	9	6
$7 \& 8$	Probability \& Statistics	33	15	11
8	Post-Test 15 Questions			
8 Sessions	Total		100	45

Algebraic Thinking and the Coordinate Plane

- Determine whether two algebraic expressions are equivalent by applying properties of operations or equality.
- Identify an algebraic expression, equation, or inequality that models a realworld situation.
- Solve equations and inequalities (e.g., linear, quadratic) graphically or algebraically.
- Determine and solve equations or inequalities, graphically or algebraically, in real-world problems.
- Graph and interpret a linear equation in real-world problems (e.g., use data to plot points, explain slope and y-intercept, and determine additional solutions).
- Identify relations that satisfy the definition of a function.
- Compare the slopes of two linear functions represented algebraically and graphically.
29% or Approximately 13 questions
Cliff Notes Text: pages 149-203

Tips for Algebra

- Understand the definition and purpose of the variable.
- Understand the power of substitution.
- Use proportions when comparisons are made.
- Watch out for negative signs.
- Make good use of your calculator.

Expression versus Equation

Expression

Does not have an equal sign

Combine Like Terms

Equation

Has an equal sign
If on the same side of the equal sign, Combine Like Terms. Otherwise, perform inverse operations.
Evaluate
Solve
$4 x+5$
$3 x+6=12$

Like Terms

- All numbers without variables are like terms.
- Like terms are terms with the same variable(s) and same exponents.

Examples	Sum	Non-Examples
$4 x$ and $2 x$	$6 x$	$6 x y z$ and $-4 x y$
$5 y^{2}$ and $-13 y^{2}$	$-8 y^{2}$	$5 y$ and $-13 y^{2}$
$3 x y^{2}$ and $x y^{2}$	$4 x y^{2}$	-34 and $25 x$
6 and -12	-6	m and n

4 Basic Operations \& Ways to Undo Them

Operation

Addition
Subtraction
Multiplication
Division

How to Undo Operation

Subtraction
Addition
Division
Multiplication

Other Words Representing Basic Operations

Operation OtherWords Used

addition
subtraction multiplication product, times, twice division
sum, plus, increased by difference, minus, decreased by quotient, divided by, ratio

Other Vocabulary

Coefficient: the number in front of a variable. In $4 x$, the coefficient is 4 .
Constant term: the number without the variable. $\ln 2 x-6,-6$ is the constant.

Inequalities:

- < Less than
- $>$ Greater than
- \leq Less than or equal to
- \geq greater than or equal to
- \neq not equal to

Translations

Translation

Expression

Twice a number $2 x$
The difference between a number and two $x-2$
Six more than twice a number $6+2 x$
Four times the sum of a number and five $4(x+5)$
The square of the sum, x plus 3$(x+3)^{2}$
The ratio of a number and seventeen $x / 17$

Translation-Type Algebraic Question

A box of pens costs $\$ 2.49$. What equation would allow you to calculate the cost (C) of multiple boxes (B) of pens?
A) $B=2.49 C$
B) $C=2.49 B$
C) $2.49=B+C$
D) $B-2.49=C$

Answer: B) $C=2.49 B$

Translations for Inequalities

Note when the circle on the numberline is open and when it is closed.

Distributive Property

- $7(2 x+6)=14 x+42$
- $-2(5-4 x)=-10+8 x$
- $4+5(3 x-1)=4+15 x-5=15 x-1$
- $3 x-(4 x+8)=3 x-4 x-8=-x-8$

Substitution

- Evaluate: $7 y^{2}-8 x y+11$, if $x=-1$ and $y=2$
- Understand the operations 7 times y squared minus 8 times x times y plus 11
- 7()$^{2}-8$ ($)()+11$

Use parenthesis to denote where you will need to insert a value.

- $7(2)^{2}-8(-1)(2)+11 \quad$ Next, simplify one part at a time
- $7(4)+16+11$ Take your time
- $28+16+11$

55 Answer

Solving Equations

- Types of Solutions
${ }^{-} 1$ solution
- No solution
- All Real Numbers

No Solution vs All Real Numbers

$$
\left.\left.\begin{array}{c|c}
\text { No Solution } & \text { All Real Numbers or Infinitely } \\
\text { Many Solutions }
\end{array}\right] \begin{array}{rr}
-3 p+2-2 p=7-5 p \\
-5 p+2=7-5 p
\end{array}\right)
$$

Inequalities

- Solve inequalities like equations
\longrightarrow isolate the variable.
- Major Difference: When multiplying or dividing both sides by a negative value, reverse the inequality symbol.

$2(x+4) \geq 16$	$-5 x+1<21$	$-22<-\frac{2}{3} x+2 \leq 14$
$\begin{array}{r} 2 x+8 \geq 16 \\ -8 \quad-8 \\ \hline \end{array}$	$\begin{array}{r} -5 x+1<21 \\ -1 \quad-1 \\ \hline \end{array}$	$-22<-\frac{2}{3} x+2 \leq 14$
$\begin{aligned} 2 x / 2 & \geq 8 / 2 \\ x & \geq 4 \end{aligned}$	$\begin{aligned} *-5 x / y^{2} & <20 /-5 \\ x & >-4 \end{aligned}$	$\begin{gathered} \left.\frac{-2}{-24}<\begin{array}{c} -2-2 \\ -24 \leq 12 \\ *\left(-\frac{3}{2}\right)(-24) \\ 36 \end{array}\right) \quad\left(-\frac{3}{2}\right)\left(-\frac{2}{3} x\right) \leq\left(-\frac{3}{2}\right) 12 \\ 3 \geq-18 \end{gathered}$

Real-World Inequality Problem

You Try:

A salesman receives a base salary of $\$ 300$ a month, plus 10% of his sales. How much do his average weekly sales (s) have to be to make enough money to cover his monthly expenses of $\$ 950$?
A) $s \leq \$ 650$
B) $s \leq \$ 6,500$
C) $s \geq \$ 1,625$
D) $s \leq \$ 1,625$

Real-World Inequality Problem Answered

Question: A salesman receives a base salary of \$300 a month, plus 10\% of his sales. How much do his average weekly sales (s) have to be to make enough money to cover his monthly expenses of $\$ 950$?

- Note: the information within the question is in monthly terms, but the question is asking for the answer to be in weekly terms.
- Equation: $300+0.1 s \geq 950$

$$
\begin{array}{rlrl}
0.1 & s & \geq 650 & \\
s & \geq 6500 & & \text { Divide both sides by o.1 } \\
s & \geq(6500 \div 4) & & \text { Adjusted for weekly expenses. } \\
s & \geq 1625 & & \text { The answer is } C .
\end{array}
$$

Consecutive Integers

- When you are confronted with a consecutive integer word problem, you must create a set of variables that represent the numbers.
- It might be helpful to give yourself an example of three numbers that are consecutive; example 3,4 , and 5 .
- If the first number 3 is represented by the variable x, how would you represent 4 or 5 ?
- Using this logic, three consecutive numbers would be represented by $\mathrm{x}, \mathrm{x}+1$, and $\mathrm{x}+2$.

Consecutive Integers

The sum of three consecutive integers is 45 . What is 5 more than twice the second integer?

- First identify variable representations for the numbers.
- $n, n+1, n+2$.
- Write an equation representing the first part of the question.
${ }^{\bullet} n+n+1+n+2=45 \rightarrow 3 n+3=45 \rightarrow 3 n=42 \rightarrow n=14$
- The 3 numbers are 14,15 , and 16 .
- 5 more than twice the second integer $=5+2(15)=5+30=35$.

Systems of Linear Equations

- A linear system is two or more equations solved simultaneously.
- Three types of solutions: no solution, 1 solution, many solutions.
- No Solution means the lines are parallel so they don't touch.
- One Solution means the lines touch in exactly one point; meaning the solution is an ordered pair in the form (x, y).
- Many solutions means the lines are on top of one another; meaning the equations are equal. Also called coinciding lines.

Systems of Linear Equations

- There are at least three ways to solve systems: Graphing, Substitution, Elimination.
- Substitution and Elimination are good methods. Another method of solving systems is to use the choices provided and plug the values in. This may not always be possible.
- Let's look at Substitution.

Systems (Substitution)

$$
\begin{array}{lr}
x=5 \\
2 x-y=12 & \begin{aligned}
2(5)-y & =12 \\
10-y & =12 \\
& -10
\end{aligned} \\
& =-10 \\
\text { Use information in } & -y=2 \\
\text { the first equation to } & y=-2
\end{array}
$$

substitute into the second equation.

Systems
 Combination or Elimination

$$
\begin{gathered}
4 x+2 y=-24 \\
2 x-2 y=12
\end{gathered} \quad \begin{array}{rlr}
4 x+2 y & =-24 & 4 x+2 y=-24 \\
2 x-2 y & =12 & 4(-2)+2 y=-24 \\
6 x & =-12 & -8+2 y=-24 \\
x=-2 & 2 y=-16
\end{array}
$$

Add the two equations together in an attempt to eliminate the y variable.
Solve for x, then use substitution to find the value of y.

Points are Important in Algebra

- Ordered Pairs are written in the form (\mathbf{x}, y) also called a point.
- With any two points, the distance (length), midpoint, and slope can be determined.
- In all three formulas, the subscripts focus on one coordinate at a time.
- If it is helpful, indicate on scratch paper which point is first and which is second.

Coordinate System Images

					6							
					5							
		QUADRANI			4	QUADRANT						
			II		3			I				
					2							
					1							
		. 5	$4 \cdot 3$	$3 \cdot 2 \cdot 1$		1	2	3	4	5	E	
					-1							
	QUADRANT				$\cdot 3$	QUADRANT						
					${ }^{-3}$		(1)	IV	-	I		
					-4							
					5							
					- 6							
					. 7							

Four quadrants that are counted in a counterclockwise fashion.

Points

On the graph paper provided, plot the following points in a coordinate plane. Label each point.

A(0,4); B(-2,1); C(6,-3);
D (-5,0); E(0, 0); F (-3,-5)

Distance

- Distance is also referred to as length.
- The distance between two points is always positive.
- Find the distance between (17,2) and ($14,-8$).

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(14-17)^{2}+(-8-2)^{2}} \\
\sqrt{(-3)^{2}+(-10)^{2}}=\sqrt{9+100}=\sqrt{109} \approx 10.44
\end{gathered}
$$

Midpoint

- Find the midpoint of segment $A B$ with endpoints $A(-2,5)$ and $B(6,11)$.
- The subscripts in the formula means there are two points.
- Ordered Pairs are written in the form (x, y).
- The x -values are - $2=x_{1}$ and 6= x_{2}
- The y-values are $5=y_{1}$ and $11=y_{2}$

Solution: $\left(\frac{6-2}{2}, \frac{11+5}{2}\right)=\left(\frac{4}{2}, \frac{16}{2}\right)=(2,8)$.

Slope

- 4 types of slope: positive, negative, zero and undefined.
- Find the slope of the line that contains $(-2,3)$ and $(-5,7)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-3}{-5-(-2)}=\frac{4}{-5+2}=\frac{4}{-3}
$$

- Be careful about zeros:
- Find the slope of the line that contains $(2,4)$ and $(2,-13)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-13-4}{2-2}=\frac{-17}{0}=\text { undefined }
$$

- Find the slope of the line that contains $(11,5)$ and $(-3,5)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-5}{-3-11}=\frac{0}{-14}=0
$$

Parallel vs Perpendicular Lines

- The slopes of parallel lines are equal. (parallel lines never touch)
- The slopes of perpendicular lines are negative reciprocals. (perpendicular lines form 90 degree angles)
- Use $y=m x+b$ to identify the slope (m) and y-intercept (b)
- Are the lines represented by $y=\frac{5}{7} x-4$ and $y=\frac{7}{5} x-2$ parallel, perpendicular, or neither?
- Answer: Neither because the slopes are reciprocals but they are not negative reciprocals.

Domain/Range

Domain: the set of x-values.
${ }^{-}$Range: the set of y-values.

- Relation: a set of ordered pairs.

Function: every x must have only one y .

Domain/Range Example 1

Use the relation to answer each question:
$\{(1,2) ;(-3,1) ;(5,6)\}$
a)State the domain: $\{-3,1,5\}$
b) State the range: $\{1,2,6\}$
C) Is the relation a function? YES. No values of y repeat for the same value of x.

Domain/Range Example 2

Use the relation to answer each question:
$\{(1,2) ;(-3,1) ;(5,6) ;(-3,5) ;(0,6) ;(2,4)\}$
a) State the domain: $\{-3,0,1,2,5\}$
b) State the range: $\{1,2,4,5,6\}$
C) Is the relation a function? NO. -3 corresponds to 1 and 5 .

Vertical Line Test to Identify Functions

Only Graph A is a function.

Which of these lines are functions?

- All lines shown in the second image are functions.
- Vertical Lines are absent from the image.
- Vertical lines fail the Vertical Line Test.

Graphing Linear Equations

Using $y=m x+b$, identify the y-intercept and slope.

- Identify a partner and practice!
- Graph:
A) $y=2 x+4$
B) $y=\frac{3}{2} x-2$
C) $y=5$
D) $x=-1$

Graphing Inequalities

Graph on a number-line:

- Very similar to graphing equations, except shading is required.
- A) $y>2 x+4$
B) $y \leq-2 x+5$
- C) $y \leq 6$
D) $x>-3$

Complete the two Algebra Worksheets

Use the Cliff Notes text for additional practice.

