Complex fraction

Definition

Complex fractions are fractions whose numerator, denominator, or both are also fractions.

Another way to put it is to say that a complex fraction is a ratio of two fractions

All the following are complex fractions:

Helpful Tips

Complex fractions can look quite scary and complicated.

The strategy is to break the complex fraction into smaller pieces that you can solve easily.

Step 1: Rewrite the complex fraction as a regular fraction

$$
\frac{1}{4} \div \frac{5}{6}
$$

Step 2: Divide using the rules of division

Remember KCF

Keep

$$
\frac{1}{4} \div \frac{5}{6} \text { becomes }
$$

Change
Flip

$$
\frac{1}{4} \quad-\frac{6}{5}
$$

Step 3: Simplify

$$
\begin{aligned}
& \frac{1}{4} \cdot \frac{6}{5} \\
& 2 \\
& =\frac{3}{10}
\end{aligned}
$$

Let's Practice

Write the complex fraction below in a simpler form

$$
\frac{3}{2} \div \frac{8}{10}
$$

Now Solve

Let's Step it Up

$$
\begin{array}{r}
\frac{2}{5} \\
=\frac{2}{5} \div \frac{3}{1} \\
\\
=\frac{2}{5} \\
\frac{2}{15}
\end{array}
$$

First rewrite the expression in a simpler form

$$
2 \div\left(\frac{3}{2}-\frac{4}{3}\right)
$$

Next simplify the expression with more than one terms. In this case it is the denominator.

$$
\left(\frac{3}{2}-\frac{4}{3}\right)=\frac{9}{6}-\frac{8}{6}=\frac{1}{6}
$$

Now substitute your answer for the expression in the problem

$$
2 \div\left(\frac{3}{2}-\frac{4}{3}\right)=2 \div \frac{1}{6}
$$

Next use KCF and solve your new fraction problem

$$
=\frac{2}{1} \cdot \frac{6}{1}=12
$$

