Ratio and proportion

What is a ratio

A ratio is a comparison of two numbers

Ratios can be shown in different ways. Using the ":" to separate example values, or as a single number by dividing one value by the total.

Example: if there is 1 boy and 3 girls you could write the ratio as:

1:3 (for every one boy there are 3 girls)
1/4 are boys and $3 / 4$ are girls
0.25 ree boys (by dividing 1 by 4)

25\% are boys (0.25 as a percentage)

What is a proportion

Two equal ratios form a proportion

A percent is actually a ratio! Saying " 25% " is actually saying " 25 per 100":

$$
25 \%=\frac{25}{100}
$$

We can use proportions to solve questions involving percents.

First, put what we know into this form:

$$
\frac{\text { Part }}{\text { Whole }}=\frac{\text { Percent }}{100}
$$

The graph of a proportional relationship will pass through the origin $(0,0)$

The graph of a non-proportional relationship will not pass through the origin

Proportional

Non-Proportional

Time (min.)	Distance (ft.)
0	0
2	6
4	12
6	18
2	$\frac{6}{18}$

Ratios are equivalent.

Time (min.)	Distance (ft.)
0	4
2	10
4	16
6	22
$\frac{1}{5} \frac{2}{10}=\frac{6}{22} \frac{3}{11}$	
Ratios are not equivalent.	

How can I use my knowledge of Proportion to solve a Word Problem

The scale on a blueprint for the height of a house is 2 inches for 5 feet. If the roof on the blue print is 8.5 inches, write a proportion for the height of the house.

http://www.virtualnerd.com/pre-algebra/ratios-proportions/proportion-word-problem-set-up.php

We can use proportions to solve questions involving percents.

First, put what we know into this form:

$$
\frac{\text { Part }}{\text { Whole }}=\frac{\text { Percent }}{100}
$$

Example: what is 25% of 160 ?

The percent is 25 , the whole is 160 , and we want to find the "part":

$$
\frac{\text { Part }}{160}=\frac{25}{100}
$$

Example: what is 25% of 160 (continued) ?

$$
\frac{\text { Part }}{160}=\frac{25}{100}
$$

Multiply across the known corners, then divide by the third number:

Answer: $\mathbf{2 5 \%}$ of 160 is $\mathbf{4 0 .}$

Example: what is $\$ 12$ as a percent of $\$ 80$?

Fill in what we know:

$$
\frac{\$ 12}{\$ 80}=\frac{\text { Percent }}{100}
$$

Multiply across the known corners, then divide by the third number. This time the known corners are top left and bottom right:

$$
\text { Percent }=(\$ 12 \times 100) / \$ 80=1200 / 80=\mathbf{1 5 \%}
$$

Answer: $\$ 12$ is $\mathbf{1 5 \%}$ of $\$ 80$

Example: The sale price of a phone was $\$ 150$, which was only 80% of normal price. What was the normal price?

Fill in what we know:

$$
\frac{\$ 150}{\text { Whole }}=\frac{80}{100}
$$

Multiply across the known corners, then divide by the third number:

$$
\begin{gathered}
\$ 150 \text { mu/tip/y } 80 \text { divide } \\
\text { Whole }=(\$ 150 \times 100) / 80=15000 / 80=\mathbf{1 8 7 . 5 0}
\end{gathered}
$$

Answer: the phone's normal price was $\mathbf{\$ 1 8 7 . 5 0}$

Sam tried using a ladder, tape measure, ropes and various other things, but still couldn't work out how tall the tree was.

But then Sam has a clever idea ... similar triangles!

Sam measures a stick and its shadow (in meters), and also the shadow of the tree, and this is what he gets:

Now Sam makes a sketch of the triangles, and writes down the "Height to Length" ratio for both triangles:

$$
\frac{\text { Height: }}{\text { Shadow Length: }} \quad \frac{h}{2.9 \mathrm{~m}}=\frac{2.4 \mathrm{~m}}{1.3 \mathrm{~m}}
$$

Multiply across the known corners, then divide by the third number:

$$
h=(2.9 \times 2.4) / 1.3=6.96 / 1.3=5.4 \mathrm{~m} \text { (to nearest } 0.1 \text {) }
$$

Answer: the tree is 5.4 m tall.

