PART II: CHANGE THE SAMPLE SIZE?

The students randomly selected 65 boxes in performing their test of significance. It was calculated earlier, via simulation, that the students’ test, using $\alpha = .05$, has a power of approximately 0.226 against the alternative hypothesis of $p = 0.15$.

What would happen to the power against $p = 0.15$ if the sample size was increased?

Suppose the students decide to perform a second test, only this time they will randomly select 130 boxes. If the students use the same hypotheses as in their first 65 box test and use $\alpha = .05$, they would have the following rule for concluding the company is cheating.

Conclude the company is cheating if you obtain _______________ or fewer boxes with vouchers out of 130.

1. Pretend the company is cheating with $p = 0.15$. Simulate the selection of a random sample of 130 cereal boxes from a population in which 15% of all boxes contain a voucher. Repeat your simulation for a total of 20 times and record your results in the table below. Calculator Command: `randBin(130,.15)`

<table>
<thead>
<tr>
<th>Trial</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voucher Boxes</td>
<td></td>
</tr>
</tbody>
</table>

Remember, the assumption in the simulation is the company is cheating: $p = 0.15$. Out of your 20 trials in question #1, in how many of them did you conclude that the company is cheating?

Personal Probability:

Class Probability:

2. Comment on which sample size—$n = 65$ or $n = 130$—would result in the higher power against the alternative $p = 0.15$.